This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I...This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.展开更多
The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces o...The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.展开更多
Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great dif...Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great difference in physical property of the crust on different sides of the fault. The inferred location of crustal changes is consistent with land-form boundary on the surface展开更多
In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California h...In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.展开更多
Cross-shelf transport is important due to its role in the transport of nutrients, larvae, sediments, and pollutants. The role of coastal trapped waves(CTWs) and their contribution to the cross-shelf transport is prese...Cross-shelf transport is important due to its role in the transport of nutrients, larvae, sediments, and pollutants. The role of coastal trapped waves(CTWs) and their contribution to the cross-shelf transport is presently unknown. The impact of wind-driven CTWs on the structure of the cross-shelf currents and transport is investigated in the East China Sea(ECS) starting from theory. The cross-shelf currents are divided into four terms: the geostrophic balance(GB) term, the second-order wave(SOW) term, the bottom friction(BF) term and Ekman(EK) term, as well as three modes: the Kelvin wave(KW) mode, the first shelf wave(SW1) mode and the second shelf wave(SW2) mode. Comparison among these decompositions shows that(1) for the four terms, the effect of the GB and EK terms is continual, while that of the BF term is confi ned to 60–240 km of fshore, and the contribution of the SOW term can be ignored;(2) for the three modes, the KW and SW1 modes are dominant in cross-shelf transport. The results show that the total cross-shelf transport travels onshore under idealized wind stress on the order of 10^(-1), and it increases along the cross-shelf direction and peaks about-0.73 Sv at the continental shelf margin. With the increase of linear bottom friction coeffi cient, the cross-shelf transport declines with distance with the slope becoming more uniform.展开更多
Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone...Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone in the NW-SE direction, and is about 400 m long. The results reveal trapped waves in the rup- tured fault zone of the earthquake, and indicate a great difference in physical property between the media inside and outside the fault zone. The predominant frequency of the fault-zone trapped waves is about 3 -4 Hz. The wave amplitudes are larger near the exploration trench. The width of the fault zone in the crust at this location is estimated to be 200 m. In some records, the waveforms and the arrival times of S waves are quite different between the two sides of the trench. The place of change coincides with the boundary of uplift at the surface.展开更多
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated ...The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.展开更多
Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are ...Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are located at the northern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 160 - 180 m. The center position of rupture zone underground corresponds to the surface breaking trace, and is equally distributed at the edges of the two fault walls. However, Hongkou surveying line is located at the southern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 180 -200 m. The rupture zone underground is mainly distributed below fault scarp. The Wenchuan MsS. 0 earthquake and Lushan Ms7.0 earthquake both occurred at the Longmenshan fault belt. The results will provide information for the structure background of the two violent earthquakes.展开更多
Fault zone trapped waves (FZTWs) mainly travel along the fractured fault zone (FZ) which is of low velocity and high attenuation. FZTWs often carry significant information about a fault's internal structure, so i...Fault zone trapped waves (FZTWs) mainly travel along the fractured fault zone (FZ) which is of low velocity and high attenuation. FZTWs often carry significant information about a fault's internal structure, so it is important to understand their wave field characteristics for FZ structure inversion. Most previous simulations are based on vertical faults, while in this paper we implement the FZTW simulations on vertical or inclined faults and compare their wave fields in both time and frequency domains. The results show that the existence of fault zone and inclined angle of fault can significantly influence the features of waves near faults. In amplitude, a fault zone can generate a larger amplitude of waves. The velocity contrast between two wails of fault may lead to amplification of amplitudes in the low velocity fault wall. In frequency, a fault zone tends to influence the waves in the low frequency range. In a pattern of particle polarization of FZTWs, it tends to be single direction for vertical faults but fork to multiple directions for inclined faults, which might provide a new way to study the fault zone with FZTWs. These conclusions may be valuable for FZ structure inversion, and will enhance the knowledge on near-fault strong ground motions.展开更多
Lateral energy exchange between the tropics and the midlatitudes is a topic of great importance for understanding Earth's climate system. In this paper, the authors address this issue in an idealized set up through s...Lateral energy exchange between the tropics and the midlatitudes is a topic of great importance for understanding Earth's climate system. In this paper, the authors address this issue in an idealized set up through simple shallow water models for the interactions between equatorially trapped waves and the barotropic mode, which supports Rossby waves that propagate poleward and can excite midlatitude teleconnection patterns. It is found here that the interactions between a Kelvin wave and a fixed meridionai shear (mimicking the jet stream) generates a non-trivial meridional velocity and meridional convergence in phase with the upward motion that can attain a maximum of about 50%, which oscillates on frequencies ranging from one day to 10 days. When, on the other hand, the barotropic flow is forced by slowly propagating Kelvin waves a complex flow pattern emerges; it consists of a phase-locked barotropic response that is equatoriaily trapped and that propagates eastward with the forcing Kelvin wave and a certain number of planetary Rossby waves that propagate westward and toward the poles as seen in nature. It is suggested here that the poleward propagating waves are to some sort of multi-way resonant interaction with the phase locked response. Moreover, it is shown here that a numerical scheme with dispersion properties that depend on the direction perpendicular to the direction of propagation, namely the 2D central scheme of Nessyahu and Tadmor, can artificially alter significantly the topology of the wave fields and thus should be avoided in climate models.展开更多
The effects of zonally varying mean state of equatorial Pacific on planetaryequatorial trapped waves were analytically investigated. A WKB approximation was used with the slowzonal variation hypothesis, acceptable in ...The effects of zonally varying mean state of equatorial Pacific on planetaryequatorial trapped waves were analytically investigated. A WKB approximation was used with the slowzonal variation hypothesis, acceptable in the context of equatorial trapped low-frequencyvariability, and a working space transformation was made to turn the meridional trappedlow-frequency variability, and a working space transformation was made to turn the meridional modeequation into the Weber-Hermite equation in the new space. The inhomoge-neous equatorial wave ductwas proposed and the theoretical results were compared with observation. It matches the real stateof the equatorial Pacific to a certain degree.展开更多
The formation and propagation of nonlinear dust acoustic waves(DAWs) as solitary and solitary/shock waves in an unmagnetized, homogeneous, dissipative and collisionless dusty plasma comprising negatively charged mic...The formation and propagation of nonlinear dust acoustic waves(DAWs) as solitary and solitary/shock waves in an unmagnetized, homogeneous, dissipative and collisionless dusty plasma comprising negatively charged micron sized dust grains in the presence of free and trapped electrons with singly charged non-thermal positive ions is discussed in detail. The evolution characteristics of the solitary and shock waves are studied by deriving a modified Korteweg–de Vries–Burgers(mKdV–Burgers) equation using the reductive perturbation method. The mKdV–Burgers equation is solved considering the presence(absence) of dissipation. In the absence of dissipation the system admits a solitary wave solution, whereas in the presence of dissipation the system admits shock waves(both monotonic and oscillatory) as well as a combination of solitary and shock wave solutions. Standard methods of solving the evolution equation of shock(solitary) waves are used. The results are discussed numerically using standard values of plasma parameters. The findings may be useful for better understanding of formation and propagation of waves in astrophysical plasma.展开更多
Long waves such as tsunamis can be trapped by islands due to wave refraction,and these trapped waves will cause huge damage even in the sheltered shoreline of the island.That all waves propagating into the topography ...Long waves such as tsunamis can be trapped by islands due to wave refraction,and these trapped waves will cause huge damage even in the sheltered shoreline of the island.That all waves propagating into the topography and finally reaching the coastline are called perfect trapped modes,while any waves escaping from the topography are called leaky modes.Whether these long waves can be trapped is dependent on the depth profile of the island.This paper presents analytic solutions of the ray path for waves propagating into the circular island with power function profiles.Wave height distributions over the island are further investigated based on the principia that crowded rays correspond to large wave height and sparse rays correspond to small wave height.The trapped mechanism for water waves over the island is revealed based on their ray paths.Furthermore,the perfectly trapped criterion is derived,that is,when the slope gradient at the topography toe is greater than twice the ratio of the water depth to the radial distances,all wave rays propagating on the island will finally reach the coastline,and the waves are perfectly trapped.展开更多
Deep structure and material properties of faults can be understood by observing and simulating the particular phase in a fault fracture zone. This paper reviews the development of fault-zone seismic waves in the seism...Deep structure and material properties of faults can be understood by observing and simulating the particular phase in a fault fracture zone. This paper reviews the development of fault-zone seismic waves in the seismological domain. The present research status of fault-zone head wave and trapped wave are summarized systematically. Based on recent progress in this field,the paper discusses the prospect on the utilization of seismic wave in fault structure research.展开更多
Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers ...Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/infrastructures in coastal environment.展开更多
This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's (1959) invariant imbedding is introduced to find wave reflection. An alternative method matching bo...This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's (1959) invariant imbedding is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission. The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei (1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the mild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.展开更多
The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the ...The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the structural response theory in finite water depth.The modified mild-slope equation along with suitable jump conditions and the least squares approximation method are used to handle the mathematical boundary value problem.Four types of edge conditions,i.e.,clamped-moored,clamped-free,moored-free,and moored-moored,are considered to keep the barrier at a desired position of interest.The role of the flexible porous barrier is studied by analyzing the reflection coefficient,surface elevation,and wave forces on the barrier and the rigid wall.The effects of step-type bottoms,incidence angle,barrier length,structural rigidity,porosity,and mooring angle are discussed.The study reveals that in the presence of a step bottom,full reflection can be found periodically with an increase in(i)wave number and(ii)distance between the barrier and the rigid wall.Moreover,nearly zero reflection can be found with a suitable combination of wave and structural parameters,which is desirable for creating a calm region near a rigid wall in the presence of a step bottom.展开更多
Based on the linear shallow water equations,an analytic solution of trapped waves over a symmetric parabolicprofile submerged ridge is derived.The trapped waves act as propagating waves along the ridge and as standing...Based on the linear shallow water equations,an analytic solution of trapped waves over a symmetric parabolicprofile submerged ridge is derived.The trapped waves act as propagating waves along the ridge and as standing waves across the ridge.The amplitude gets the maximum at the ridge top and decays gradually towards both sides.The decaying rate gets more gently with higher modes.Besides,an explicit first-order approximate dispersion relation is derived to simplify transcendental functions in the exact solution,which is useful to describe trapped waves over shallowly submerged ridges in reality.Furthermore,the trapping mechanism of the submerged ridge waveguides on the trans-oceanic tsunami propagation can be explained by the ray theory.A critical incident angle exists as a criterion to determine whether the wave is trapped.Besides,a trapped parameter γ is proposed to estimate the ratio of the energy trapped by the oceanic ridge if a tsunami is generated at its top.展开更多
Geodesic acoustic modes(GAMs)are oscillating zonal mode structures unique to toroidal plasmas and are capable of regulating microscopic turbulence and associated transports.Inthispaper,three important aspects of GAM...Geodesic acoustic modes(GAMs)are oscillating zonal mode structures unique to toroidal plasmas and are capable of regulating microscopic turbulence and associated transports.Inthispaper,three important aspects of GAM dynamics are investigated,namely(1) GAM continuous spectrum and its mode conversion to kinetic GAM (KGAM);(2) 1inear excitation of energetic particle induced GAM (EGAM) and its coupling to the GAM continuum, and (3) nonlinear saturationofEGAMviawaveparticletrapping.TheanalogybetweentheGAM展开更多
In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Isla...In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Island (PT) to the wintertime mon- soon relaxation in 2006 and corresponding mechanism are investigated based on the field observations. In situ data are ac- quired from Conductivity-Temperature-Depth (CTD) cruise and Bottom-Mounted Moorings (BMM), which are conducted during a comprehensive survey for the Chinese Offshore Investigation and Assessment Project in winter 2006. It is revealed that the ZMCC is well mixed vertically in winter 2006. The ZMCC (〈14℃) recedes during the relaxation of the wintertime monsoon and is accompanied by the enhanced northward shift of the warm, saline Taiwan Strait Mixed Water (TSMW, higher than 14~C and is constituted by the Taiwan Strait Warm Water and the Kuroshio Branch Water). And greatly enhanced south- ward intrusion of the ZMCC can be detected when the wintertime monsoon restores. Correspondingly, the thermal interface bounded by the ZMCC and the TSMW moves in the northwest/southeast direction, leading to periodic warm/cold reversals of the near-seabed temperature adjacent to the PT. By EOF (Empirical Orthogonal Function) analysis of the large-scale wind fields and wavelet power spectrum analysis of the water level, ocean current and the near-seabed temperature, responses of the ZMCC off the PT to wintertime monsoon relaxation are suggested to be attributed mainly to the southward propagating coast- ally trapped waves triggered by the impeding atmospheric fronts. As a result, ocean current and near-seabed temperature demonstrate significant quasi-5 d and quasi-10 d subtidal oscillations. By contrast, the onshore/offshore water accumulation resulted from Ekman advection driven by the local winds has minor contributions.展开更多
基金supported by the "Wenchuan Earthquake Fault Scientific Drilling" of the National Science Foundation of China
文摘This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.
基金sponsored by National Natural Science Foundation of China (No.40674043, 90814001)China Earthquake Admini-stration (Wenchuan Earthquake Scientific Survey 03-05)The contribution No. of this paper is RCEG 0905 of Geophysical Prospecting Center,China Earthquake Administration
文摘The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.
基金supported by the National Natural Science Foundation ofChina(41074069,40974053,90814001)RRCEG201103
文摘Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great difference in physical property of the crust on different sides of the fault. The inferred location of crustal changes is consistent with land-form boundary on the surface
文摘In this article,we review our previous research for spatial and temporal characterizations of the San Andreas Fault(SAF)at Parkfield,using the fault-zone trapped wave(FZTW)since the middle 1980s.Parkfield,California has been taken as a scientific seismic experimental site in the USA since the 1970s,and the SAF is the target fault to investigate earthquake physics and forecasting.More than ten types of field experiments(including seismic,geophysical,geochemical,geodetic and so on)have been carried out at this experimental site since then.In the fall of 2003,a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth(SAFOD)site;the main-hole(MH)passed a~200-m-wide low-velocity zone(LVZ)with highly fractured rocks of the SAF at a depth of~3.2 km below the wellhead on the ground level(Hickman et al.,2005;Zoback,2007;Lockner et al.,2011).Borehole seismographs were installed in the SAFOD MH in 2004,which were located within the LVZ of the fault at~3-km depth to probe the internal structure and physical properties of the SAF.On September 282004,a M6 earthquake occurred~15 km southeast of the town of Parkfield.The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake.This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF,California,will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models,the fault models and the earthquake forecasting models in global seismogenic regions.
基金Supported by the National Natural Science Foundation of China(Nos.41476022,41506044)the Program for Innovation Research and Entrepreneurship Team in Jiangsu Province+1 种基金the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-05)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(Nos.2013r121,2014r072)
文摘Cross-shelf transport is important due to its role in the transport of nutrients, larvae, sediments, and pollutants. The role of coastal trapped waves(CTWs) and their contribution to the cross-shelf transport is presently unknown. The impact of wind-driven CTWs on the structure of the cross-shelf currents and transport is investigated in the East China Sea(ECS) starting from theory. The cross-shelf currents are divided into four terms: the geostrophic balance(GB) term, the second-order wave(SOW) term, the bottom friction(BF) term and Ekman(EK) term, as well as three modes: the Kelvin wave(KW) mode, the first shelf wave(SW1) mode and the second shelf wave(SW2) mode. Comparison among these decompositions shows that(1) for the four terms, the effect of the GB and EK terms is continual, while that of the BF term is confi ned to 60–240 km of fshore, and the contribution of the SOW term can be ignored;(2) for the three modes, the KW and SW1 modes are dominant in cross-shelf transport. The results show that the total cross-shelf transport travels onshore under idealized wind stress on the order of 10^(-1), and it increases along the cross-shelf direction and peaks about-0.73 Sv at the continental shelf margin. With the increase of linear bottom friction coeffi cient, the cross-shelf transport declines with distance with the slope becoming more uniform.
基金supported by the Natural Science Fundation of China(40774043,40674043,90814001)
文摘Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone in the NW-SE direction, and is about 400 m long. The results reveal trapped waves in the rup- tured fault zone of the earthquake, and indicate a great difference in physical property between the media inside and outside the fault zone. The predominant frequency of the fault-zone trapped waves is about 3 -4 Hz. The wave amplitudes are larger near the exploration trench. The width of the fault zone in the crust at this location is estimated to be 200 m. In some records, the waveforms and the arrival times of S waves are quite different between the two sides of the trench. The place of change coincides with the boundary of uplift at the surface.
基金Joint Earthquake Science Foundation of China (201001).
文摘The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.
基金supported by the National Natural Science Foundation of China(4107406940974053+1 种基金40774043)RCEG201301
文摘Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are located at the northern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 160 - 180 m. The center position of rupture zone underground corresponds to the surface breaking trace, and is equally distributed at the edges of the two fault walls. However, Hongkou surveying line is located at the southern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 180 -200 m. The rupture zone underground is mainly distributed below fault scarp. The Wenchuan MsS. 0 earthquake and Lushan Ms7.0 earthquake both occurred at the Longmenshan fault belt. The results will provide information for the structure background of the two violent earthquakes.
基金sponsored by the Key Basic Scientific Research Program of Institute of Earth Science,CEA(0213241302)
文摘Fault zone trapped waves (FZTWs) mainly travel along the fractured fault zone (FZ) which is of low velocity and high attenuation. FZTWs often carry significant information about a fault's internal structure, so it is important to understand their wave field characteristics for FZ structure inversion. Most previous simulations are based on vertical faults, while in this paper we implement the FZTW simulations on vertical or inclined faults and compare their wave fields in both time and frequency domains. The results show that the existence of fault zone and inclined angle of fault can significantly influence the features of waves near faults. In amplitude, a fault zone can generate a larger amplitude of waves. The velocity contrast between two wails of fault may lead to amplification of amplitudes in the low velocity fault wall. In frequency, a fault zone tends to influence the waves in the low frequency range. In a pattern of particle polarization of FZTWs, it tends to be single direction for vertical faults but fork to multiple directions for inclined faults, which might provide a new way to study the fault zone with FZTWs. These conclusions may be valuable for FZ structure inversion, and will enhance the knowledge on near-fault strong ground motions.
基金Project supported in part by the Natural Sciences and Engineering Research Council of Canada (No.288339-2004)the Canadian Foundation for Climate and Atmospheric Sciences (No.GR-7021)
文摘Lateral energy exchange between the tropics and the midlatitudes is a topic of great importance for understanding Earth's climate system. In this paper, the authors address this issue in an idealized set up through simple shallow water models for the interactions between equatorially trapped waves and the barotropic mode, which supports Rossby waves that propagate poleward and can excite midlatitude teleconnection patterns. It is found here that the interactions between a Kelvin wave and a fixed meridionai shear (mimicking the jet stream) generates a non-trivial meridional velocity and meridional convergence in phase with the upward motion that can attain a maximum of about 50%, which oscillates on frequencies ranging from one day to 10 days. When, on the other hand, the barotropic flow is forced by slowly propagating Kelvin waves a complex flow pattern emerges; it consists of a phase-locked barotropic response that is equatoriaily trapped and that propagates eastward with the forcing Kelvin wave and a certain number of planetary Rossby waves that propagate westward and toward the poles as seen in nature. It is suggested here that the poleward propagating waves are to some sort of multi-way resonant interaction with the phase locked response. Moreover, it is shown here that a numerical scheme with dispersion properties that depend on the direction perpendicular to the direction of propagation, namely the 2D central scheme of Nessyahu and Tadmor, can artificially alter significantly the topology of the wave fields and thus should be avoided in climate models.
文摘The effects of zonally varying mean state of equatorial Pacific on planetaryequatorial trapped waves were analytically investigated. A WKB approximation was used with the slowzonal variation hypothesis, acceptable in the context of equatorial trapped low-frequencyvariability, and a working space transformation was made to turn the meridional trappedlow-frequency variability, and a working space transformation was made to turn the meridional modeequation into the Weber-Hermite equation in the new space. The inhomoge-neous equatorial wave ductwas proposed and the theoretical results were compared with observation. It matches the real stateof the equatorial Pacific to a certain degree.
文摘The formation and propagation of nonlinear dust acoustic waves(DAWs) as solitary and solitary/shock waves in an unmagnetized, homogeneous, dissipative and collisionless dusty plasma comprising negatively charged micron sized dust grains in the presence of free and trapped electrons with singly charged non-thermal positive ions is discussed in detail. The evolution characteristics of the solitary and shock waves are studied by deriving a modified Korteweg–de Vries–Burgers(mKdV–Burgers) equation using the reductive perturbation method. The mKdV–Burgers equation is solved considering the presence(absence) of dissipation. In the absence of dissipation the system admits a solitary wave solution, whereas in the presence of dissipation the system admits shock waves(both monotonic and oscillatory) as well as a combination of solitary and shock wave solutions. Standard methods of solving the evolution equation of shock(solitary) waves are used. The results are discussed numerically using standard values of plasma parameters. The findings may be useful for better understanding of formation and propagation of waves in astrophysical plasma.
基金supported by the National Key Research and Development Program of China(No.2016YFC 1402800)the National Science Fund for Distinguished Young Scholars(No.51425901)+1 种基金the National Natural Science Foundation of China(No.51579090)Innovation Project of Colleges and Universities in Jiangsu Province(No.2015B41814)
文摘Long waves such as tsunamis can be trapped by islands due to wave refraction,and these trapped waves will cause huge damage even in the sheltered shoreline of the island.That all waves propagating into the topography and finally reaching the coastline are called perfect trapped modes,while any waves escaping from the topography are called leaky modes.Whether these long waves can be trapped is dependent on the depth profile of the island.This paper presents analytic solutions of the ray path for waves propagating into the circular island with power function profiles.Wave height distributions over the island are further investigated based on the principia that crowded rays correspond to large wave height and sparse rays correspond to small wave height.The trapped mechanism for water waves over the island is revealed based on their ray paths.Furthermore,the perfectly trapped criterion is derived,that is,when the slope gradient at the topography toe is greater than twice the ratio of the water depth to the radial distances,all wave rays propagating on the island will finally reach the coastline,and the waves are perfectly trapped.
基金sponsored by the Foundation of China Scholarship Council,the"Earthquake Science Talents Training Program"of China Earthquake Administration,the Sub-project of National Key Technology R&D Program(1012BAK19804-01-05)the Natural Science Foundation of Shandong Province(ZR2012DQ006),China
文摘Deep structure and material properties of faults can be understood by observing and simulating the particular phase in a fault fracture zone. This paper reviews the development of fault-zone seismic waves in the seismological domain. The present research status of fault-zone head wave and trapped wave are summarized systematically. Based on recent progress in this field,the paper discusses the prospect on the utilization of seismic wave in fault structure research.
文摘Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/infrastructures in coastal environment.
文摘This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's (1959) invariant imbedding is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission. The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei (1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the mild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.
文摘The present study deals with the oblique wave trapping by a surface-piercing flexible porous barrier near a rigid wall in the presence of step-type bottoms under the assumptions of small amplitude water waves and the structural response theory in finite water depth.The modified mild-slope equation along with suitable jump conditions and the least squares approximation method are used to handle the mathematical boundary value problem.Four types of edge conditions,i.e.,clamped-moored,clamped-free,moored-free,and moored-moored,are considered to keep the barrier at a desired position of interest.The role of the flexible porous barrier is studied by analyzing the reflection coefficient,surface elevation,and wave forces on the barrier and the rigid wall.The effects of step-type bottoms,incidence angle,barrier length,structural rigidity,porosity,and mooring angle are discussed.The study reveals that in the presence of a step bottom,full reflection can be found periodically with an increase in(i)wave number and(ii)distance between the barrier and the rigid wall.Moreover,nearly zero reflection can be found with a suitable combination of wave and structural parameters,which is desirable for creating a calm region near a rigid wall in the presence of a step bottom.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579090 and 51425901)the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering(Grant No.LP1405)+1 种基金the Open Foundation of the Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2014SS02)the Fundamental Research Funds for the Central University(Hohai University,Grant No.2014B04114)
文摘Based on the linear shallow water equations,an analytic solution of trapped waves over a symmetric parabolicprofile submerged ridge is derived.The trapped waves act as propagating waves along the ridge and as standing waves across the ridge.The amplitude gets the maximum at the ridge top and decays gradually towards both sides.The decaying rate gets more gently with higher modes.Besides,an explicit first-order approximate dispersion relation is derived to simplify transcendental functions in the exact solution,which is useful to describe trapped waves over shallowly submerged ridges in reality.Furthermore,the trapping mechanism of the submerged ridge waveguides on the trans-oceanic tsunami propagation can be explained by the ray theory.A critical incident angle exists as a criterion to determine whether the wave is trapped.Besides,a trapped parameter γ is proposed to estimate the ratio of the energy trapped by the oceanic ridge if a tsunami is generated at its top.
文摘Geodesic acoustic modes(GAMs)are oscillating zonal mode structures unique to toroidal plasmas and are capable of regulating microscopic turbulence and associated transports.Inthispaper,three important aspects of GAM dynamics are investigated,namely(1) GAM continuous spectrum and its mode conversion to kinetic GAM (KGAM);(2) 1inear excitation of energetic particle induced GAM (EGAM) and its coupling to the GAM continuum, and (3) nonlinear saturationofEGAMviawaveparticletrapping.TheanalogybetweentheGAM
基金supported by National Natural Science Foundation of China(Grant Nos.41176031 and 40806013)Chinese Offshore Physical Oceanography and Marine Meteorology Investigation and Assessment Project(Grant No.908-ZC-I-01)National Basic Research Program of China(Grant No:.2011CB403504).
文摘In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Island (PT) to the wintertime mon- soon relaxation in 2006 and corresponding mechanism are investigated based on the field observations. In situ data are ac- quired from Conductivity-Temperature-Depth (CTD) cruise and Bottom-Mounted Moorings (BMM), which are conducted during a comprehensive survey for the Chinese Offshore Investigation and Assessment Project in winter 2006. It is revealed that the ZMCC is well mixed vertically in winter 2006. The ZMCC (〈14℃) recedes during the relaxation of the wintertime monsoon and is accompanied by the enhanced northward shift of the warm, saline Taiwan Strait Mixed Water (TSMW, higher than 14~C and is constituted by the Taiwan Strait Warm Water and the Kuroshio Branch Water). And greatly enhanced south- ward intrusion of the ZMCC can be detected when the wintertime monsoon restores. Correspondingly, the thermal interface bounded by the ZMCC and the TSMW moves in the northwest/southeast direction, leading to periodic warm/cold reversals of the near-seabed temperature adjacent to the PT. By EOF (Empirical Orthogonal Function) analysis of the large-scale wind fields and wavelet power spectrum analysis of the water level, ocean current and the near-seabed temperature, responses of the ZMCC off the PT to wintertime monsoon relaxation are suggested to be attributed mainly to the southward propagating coast- ally trapped waves triggered by the impeding atmospheric fronts. As a result, ocean current and near-seabed temperature demonstrate significant quasi-5 d and quasi-10 d subtidal oscillations. By contrast, the onshore/offshore water accumulation resulted from Ekman advection driven by the local winds has minor contributions.