There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the nece...There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the necessary structural properties and using them in the winter. Another is the cracks that appear in the upper part of a dam when the core freezes to the banks, and leakage along the cracks threatens to desWoy the dam. Still another is the process of erosion at the bottom of the core which may occur through fissures in the rock foundation of a dam and in transport constructions. Also, the behaviour of water-retaining elements during eazthquakes is unreliable. All of these problems can be solved by using iceand cryogel-soil composites created by cryotropic gel formation (CGF). Our laboratory investigations demonstrate that the materials proposed for water-retaining elements have the necessary permeable, plastic, thermophysical, and slrength properties to solve all of these problems. Certain consmactious of water-retaining elements which may prove to be both safe and cost-effective are proposed. However, these iceand cryogel-soil composites need to be field-validated before they are used in dams and transport structures in cold regions.展开更多
文摘There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the necessary structural properties and using them in the winter. Another is the cracks that appear in the upper part of a dam when the core freezes to the banks, and leakage along the cracks threatens to desWoy the dam. Still another is the process of erosion at the bottom of the core which may occur through fissures in the rock foundation of a dam and in transport constructions. Also, the behaviour of water-retaining elements during eazthquakes is unreliable. All of these problems can be solved by using iceand cryogel-soil composites created by cryotropic gel formation (CGF). Our laboratory investigations demonstrate that the materials proposed for water-retaining elements have the necessary permeable, plastic, thermophysical, and slrength properties to solve all of these problems. Certain consmactious of water-retaining elements which may prove to be both safe and cost-effective are proposed. However, these iceand cryogel-soil composites need to be field-validated before they are used in dams and transport structures in cold regions.