Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensi...Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.展开更多
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained...The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.展开更多
Serious stretch appears in shallow long offsset signals after NMO correction. In this article we study the generation mechanism of NMO stretch, demonstrate that the conventional travel time equation cannot accurately ...Serious stretch appears in shallow long offsset signals after NMO correction. In this article we study the generation mechanism of NMO stretch, demonstrate that the conventional travel time equation cannot accurately describe the travel time of the samples within the same reflection wavelet. As a result, conventional NMO inversion based on the travel time of the wavelet's central point occurs with errors. In this article, a travel time equation for the samples within the same wavelet is reconstructed through our theoretical derivation (the shifted first arrival point travel time equation), a new NMO inversion method based on the wavelet's first arrival point is proposed. While dealing with synthetic data, the semblance coefficient algorithm equation is modified so that wavelet first arrival points can be extracted. After that, NMO inversion based on the new velocity analysis is adopted on shot offset records. The precision of the results is significantly improved compared with the traditional method. Finally, the block move NMO correction based on the first arrival points travel times is adopted on long offset records and non-stretched results are achieved, which verify the proposed new equation.展开更多
Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion met...Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.展开更多
Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), th...Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), the inversion accuracy of the traditional singular value decomposition (SVD) inversion method reduces with a decrease of SNR. In order to enhance the inversion accuracy and improve robustness of the inversion method to the SNR, an improved inversion method, based on damping factor and spectrum component residual correction, is proposed in this study. The numerical inversion results show that the oscillation of the RTS derived from the SVD method increased with a decrease of SNR, which makes it impossible to get accurate inversion components. However, the SNR has little influence on inversion components of the improved method, and the RTS has high inversion accuracy and robustness. Moreover, RTS derived from core sample data is basically in accord with the pore-size distribution curve, and the RTS derived from the actual induced polarization logging data is smooth and continuous, which indicates that the improved method is practicable.展开更多
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is perf...To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.展开更多
This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional met...This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.展开更多
Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed fo...Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.展开更多
We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo...We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo- cusing occurs in the vicinity of one hydrophone when Green's function (GF) is back-propagated from the other hydrophone, with the position and strength of the focus being sensitive to sound speed and density in the bottom. We next extract the GF from the noise cross-correlation function measured by two hydrophones with 8025-m distance in the Shallow Water '06 experiment. After realizing the TRM process, sound speed and density in the bottom are inverted by optimizing focusing of the back-propagated GF. The passive inversion method is inherently environmentally friendly and low-cost.展开更多
Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbai...Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson's ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson's ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson's ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson's ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson's ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson's ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region.展开更多
Time-Lapse Seismic improves oil recovery ratio by dynamic reservoir monitoring. Because of the large number of seismic explorations in the process of time-lapse seismic inversion, traditional methods need plenty of in...Time-Lapse Seismic improves oil recovery ratio by dynamic reservoir monitoring. Because of the large number of seismic explorations in the process of time-lapse seismic inversion, traditional methods need plenty of inversion calculations which cost high computational works. The method is therefore inefficient. In this paper, in order to reduce the repeating computations in traditional, a new time-lapse seismic inversion method is put forward. Firstly a homotopy-regularization method is proposed for the first time inversion. Secondly, with the first time inversion results as the initial value of following model, a model of the second time inversion is rebuilt by analyzing the characters of time-lapse seismic and localized inversion method is designed by using the model. Finally, through simulation, the comparison between traditional method and the new scheme is given. Our simulation results show that the new scheme could save the algorithm computations greatly.展开更多
Purpose: To evaluate respiratory-triggered three-dimensional (3D) true steady-state free-precession (SSFP) projection magnetic resonance angiographic sequences with time-spatial labeling inversion pulse (Time-SLIP) fo...Purpose: To evaluate respiratory-triggered three-dimensional (3D) true steady-state free-precession (SSFP) projection magnetic resonance angiographic sequences with time-spatial labeling inversion pulse (Time-SLIP) for visualizing the hepatic arteries and to optimize the image acquisition protocol. Materials and Methods: A 1.5-T clinical magnetic resonance imager was used to perform abdominal magnetic resonance angiography (MRA) in 25 consecutive patients before transcatheter arterial chemoembolization or surgery. We compared two selective space-labeling inversion pulse (tag pulse) patterns (Patterns I and II, oblique and parallel tag pulses, respectively). Two experienced radiologists evaluated the number of hepatic arterial branches visible on the acquired MRA images, and the results were referenced with those on images from intra-arterial digital subtraction angiography. Results: Images were acquired from all patients. The two radiologists clearly visualized branches of the left and right hepatic arteries. More peripheral hepatic arterial branches were identified in MRA images captured by using tag pulse Pattern I than in those acquired by using Pattern II (P P > 0.05). Conclusion: Non-contrast-enhanced Time-SLIP hepatic MRA with true SSFP allowed selective visualization of peripheral hepatic vessels.展开更多
Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recor...Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recorded by China Digital Seismograph Network (CDSN) were used in the inversion. The inverted resultshows one nodal plane of right-lateral strike-slip faulting and another of left-lateral strike-slip faulting and a simplesource time function of a duration of about 15 s and scalar seismic moment of 6.4x 102oN-N-m From the geologicaldata and tectonic settings and also from field observations and epicentral distribution of aftershocks, the nodalplane striking in the azimuth of 313° is preferred as the fault plane. The pressure axis lies almost horizontally innorth-south direction.展开更多
This paper is concerned with estimation of electrical conductivity in Maxwell equations. The primary difficulty lies in the presence of numerous local minima in the objective functional. A wavelet multiscale method is...This paper is concerned with estimation of electrical conductivity in Maxwell equations. The primary difficulty lies in the presence of numerous local minima in the objective functional. A wavelet multiscale method is introduced and applied to the inversion of Maxwell equations. The inverse problem is decomposed into multiple scales with wavelet transform, and hence the original problem is reformulated to a set of sub-inverse problems corresponding to different scales, which can be solved successively according to the size of scale from the shortest to the longest. The stable and fast regularized Gauss-Newton method is applied to each scale. Numerical results show that the proposed method is effective, especially in terms of wide convergence, computational efficiency and precision.展开更多
The conventional time function of electromechanical relays is hard to coordinate with other relays. In order to promote the application of inverse-time overcurrent relays, a new time function for microprocessor-type r...The conventional time function of electromechanical relays is hard to coordinate with other relays. In order to promote the application of inverse-time overcurrent relays, a new time function for microprocessor-type relay is proposed. The setting of the trip time for this relay is performed by determining the shortest trip time and the longest trip time, respectively. The results of analysis show that with the new time function, the inverse-time overcurrent relay is easy to coordinate with other relays and has a comparatively shorter trip time, and that the fault happens in the protective zone.展开更多
This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or ...This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or a localized function. This study finds that wavelet’s dual can be a harmonic which is not local. This finding leads to new CWT inversion formulas. It also justifies the concept of normal wavelet transform which is useful in time-frequency analysis and time-frequency filtering. This study also proves a law for CWT inversion: either wavelet or its dual must integrate to zero.展开更多
Based on the fact that it is diffi cult to implement optimum inversion using 2D and 3D forward modeling with magnetic-source transient electromagnetics(TEM),this paper explores a novel approach to the implementation o...Based on the fact that it is diffi cult to implement optimum inversion using 2D and 3D forward modeling with magnetic-source transient electromagnetics(TEM),this paper explores a novel approach to the implementation of 2D magnetic-source TEM inversion.In particular,we converted magnetic-source TEM data into magnetotelluric(MT)data and then used a 2D MT inversion method to implement a 2D magnetic-source TEM inversion interpretation.First,we studied the similarity between magnetic-source TEM waves and MT waves and between magnetic-source TEM all-time apparent resistivity and MT Cagniard apparent resistivity.Then,we selected an optimal time-frequency transformation coeffi cient to implement rapid time-frequency transformation of all-time TEM apparent resistivity to MT Cagniard apparent resistivity.Afterward,we conducted 1D pseudo-MT inversions of magnetic-source 1D TEM theoretical models.The 1D inversion results demonstrated that the diff erence between the inversion parameters and model parameters was small,while the MT 1D inversion method could be used to conduct magnetic 1D TEM inversion within a certain margin of error.We further conducted 2D pseudo-MT inversions of 3D magnetic-source TEM theoretical models,and the 2D inversion results indicated that selecting a joint 2D pseudo-MT transverse-electric(TE)and transverse-magnetic(TM)inversion method based on measuring the line above a 3D anomalous body can help to accurately implement a 2D inversion interpretation of the 3D TEM response.展开更多
The complex resistivity of coal and related rocks contains abundant physical property information,which can be indirectly used to study the lithology and microstructure of these materials.These aspects are closely rel...The complex resistivity of coal and related rocks contains abundant physical property information,which can be indirectly used to study the lithology and microstructure of these materials.These aspects are closely related to the fluids inside the considered coal rocks,such as gas,water and coalbed methane.In the present analysis,considering different lithological structures,and using the Cole-Cole model,a forward simulation method is used to study different physical parameters such as the zero-frequency resistivity,the polarizability,the relaxation time,and the frequency correlation coefficient.Moreover,using a least square technique,a complex resistivity“inversion”algorithm is written.The comparison of the initial model parameters and those obtained after inversion is used to verify the stability and accuracy of such approach.The method is finally applied to primary-structure coal considered as the experimental sample for complex resistivity measurements.展开更多
Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wavepacket obeying the quadratic time-dependent Hamiltonian(QTDH). However, in general, most of the practical c...Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wavepacket obeying the quadratic time-dependent Hamiltonian(QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific timedependent periodic harmonic oscillator, the Berry phase is obtained exactly.展开更多
In this paper, we investigate the elastic wave full-waveform inversion (FWI) based on the trust region method. The FWI is an optimization problem of minimizing the misfit between the observed data and simulated data. ...In this paper, we investigate the elastic wave full-waveform inversion (FWI) based on the trust region method. The FWI is an optimization problem of minimizing the misfit between the observed data and simulated data. Usually</span><span style="font-family:"">,</span><span style="font-family:""> the line search method is used to update the model parameters iteratively. The line search method generates a search direction first and then finds a suitable step length along the direction. In the trust region method, it defines a trial step length within a certain neighborhood of the current iterate point and then solves a trust region subproblem. The theoretical methods for the trust region FWI with the Newton type method are described. The algorithms for the truncated Newton method with the line search strategy and for the Gauss-Newton method with the trust region strategy are presented. Numerical computations of FWI for the Marmousi model by the L-BFGS method, the Gauss-Newton method and the truncated Newton method are completed. The comparisons between the line search strategy and the trust region strategy are given and show that the trust region method is more efficient than the line search method and both the Gauss-Newton and truncated Newton methods are more accurate than the L-BFGS method.展开更多
文摘Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.
基金supported by the National Key R&D Program of China (No.2021YFC2801202)the National Natural Science Foundation of China (No.42076224)the Fundamental Research Funds for the Central Universities (No.202262012)。
文摘The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.
基金sponsored by the National Natural Science Foundation of China (No. 41074075)
文摘Serious stretch appears in shallow long offsset signals after NMO correction. In this article we study the generation mechanism of NMO stretch, demonstrate that the conventional travel time equation cannot accurately describe the travel time of the samples within the same reflection wavelet. As a result, conventional NMO inversion based on the travel time of the wavelet's central point occurs with errors. In this article, a travel time equation for the samples within the same wavelet is reconstructed through our theoretical derivation (the shifted first arrival point travel time equation), a new NMO inversion method based on the wavelet's first arrival point is proposed. While dealing with synthetic data, the semblance coefficient algorithm equation is modified so that wavelet first arrival points can be extracted. After that, NMO inversion based on the new velocity analysis is adopted on shot offset records. The precision of the results is significantly improved compared with the traditional method. Finally, the block move NMO correction based on the first arrival points travel times is adopted on long offset records and non-stretched results are achieved, which verify the proposed new equation.
基金supported by the National Nature Science Foundation Project(Nos.41604101 and U1562215)the National Grand Project for Science and Technology(No.2016ZX05024-004)+2 种基金the Natural Science Foundation of Shandong(No.BS2014NJ005)Science Foundation from SINOPEC Key Laboratory of Geophysics(No.33550006-15-FW2099-0027)the Fundamental Research Funds for the Central Universities
文摘Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.
基金supported by a project from the Youth Science Foundation of the National Natural Science Foundation of China (11104089)
文摘Relaxation time spectra (RTS) derived from time domain induced polarization data (TDIP) are helpful to assess oil reservoir pore structures. However, due to the sensitivity to the signal-to-noise ratio (SNR), the inversion accuracy of the traditional singular value decomposition (SVD) inversion method reduces with a decrease of SNR. In order to enhance the inversion accuracy and improve robustness of the inversion method to the SNR, an improved inversion method, based on damping factor and spectrum component residual correction, is proposed in this study. The numerical inversion results show that the oscillation of the RTS derived from the SVD method increased with a decrease of SNR, which makes it impossible to get accurate inversion components. However, the SNR has little influence on inversion components of the improved method, and the RTS has high inversion accuracy and robustness. Moreover, RTS derived from core sample data is basically in accord with the pore-size distribution curve, and the RTS derived from the actual induced polarization logging data is smooth and continuous, which indicates that the improved method is practicable.
基金supported by the Key Natural Science Foundation(No.41530320)Natural Science Foundation(No.41274121)+1 种基金Natural Science Foundation for young scientist(No.41404093)the Projects on the Development of the Key Equipment of Chinese Academy of Science(No.ZDYZ2012-1-03)
文摘To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
基金National Natural Science Foundation under Grant No.51574201Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)under Grant No.SKLGP2016K017+2 种基金Open Research Fund by Sichuan Engineering Research Center for Emergency Mapping&Disaster Reduction under Grant No.K2015B008The State Administration of Work Safety under Grant No.2014_3335Soft Science Research Projects in Sichuan Province under Grant No.2015zr0049
文摘This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.
文摘Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006
文摘We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo- cusing occurs in the vicinity of one hydrophone when Green's function (GF) is back-propagated from the other hydrophone, with the position and strength of the focus being sensitive to sound speed and density in the bottom. We next extract the GF from the noise cross-correlation function measured by two hydrophones with 8025-m distance in the Shallow Water '06 experiment. After realizing the TRM process, sound speed and density in the bottom are inverted by optimizing focusing of the back-propagated GF. The passive inversion method is inherently environmentally friendly and low-cost.
基金Key Project from China Earthquake Administration and the Project (95-11-02-01) from Ministry of Science and Technology (2001DIA10003).
文摘Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson's ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson's ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson's ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson's ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson's ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson's ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region.
文摘Time-Lapse Seismic improves oil recovery ratio by dynamic reservoir monitoring. Because of the large number of seismic explorations in the process of time-lapse seismic inversion, traditional methods need plenty of inversion calculations which cost high computational works. The method is therefore inefficient. In this paper, in order to reduce the repeating computations in traditional, a new time-lapse seismic inversion method is put forward. Firstly a homotopy-regularization method is proposed for the first time inversion. Secondly, with the first time inversion results as the initial value of following model, a model of the second time inversion is rebuilt by analyzing the characters of time-lapse seismic and localized inversion method is designed by using the model. Finally, through simulation, the comparison between traditional method and the new scheme is given. Our simulation results show that the new scheme could save the algorithm computations greatly.
文摘Purpose: To evaluate respiratory-triggered three-dimensional (3D) true steady-state free-precession (SSFP) projection magnetic resonance angiographic sequences with time-spatial labeling inversion pulse (Time-SLIP) for visualizing the hepatic arteries and to optimize the image acquisition protocol. Materials and Methods: A 1.5-T clinical magnetic resonance imager was used to perform abdominal magnetic resonance angiography (MRA) in 25 consecutive patients before transcatheter arterial chemoembolization or surgery. We compared two selective space-labeling inversion pulse (tag pulse) patterns (Patterns I and II, oblique and parallel tag pulses, respectively). Two experienced radiologists evaluated the number of hepatic arterial branches visible on the acquired MRA images, and the results were referenced with those on images from intra-arterial digital subtraction angiography. Results: Images were acquired from all patients. The two radiologists clearly visualized branches of the left and right hepatic arteries. More peripheral hepatic arterial branches were identified in MRA images captured by using tag pulse Pattern I than in those acquired by using Pattern II (P P > 0.05). Conclusion: Non-contrast-enhanced Time-SLIP hepatic MRA with true SSFP allowed selective visualization of peripheral hepatic vessels.
文摘Moment tensor inversion was carried out to myert the source mechanism and source time function of the Ms=7.6November 6. 1988, Lancang-Gengma. Yunnan Province, Chin4 earthquake. Waveforms of long-period bodywaves recorded by China Digital Seismograph Network (CDSN) were used in the inversion. The inverted resultshows one nodal plane of right-lateral strike-slip faulting and another of left-lateral strike-slip faulting and a simplesource time function of a duration of about 15 s and scalar seismic moment of 6.4x 102oN-N-m From the geologicaldata and tectonic settings and also from field observations and epicentral distribution of aftershocks, the nodalplane striking in the azimuth of 313° is preferred as the fault plane. The pressure axis lies almost horizontally innorth-south direction.
基金supported by the Program of Excellent Team of Harbin Institute of Technology
文摘This paper is concerned with estimation of electrical conductivity in Maxwell equations. The primary difficulty lies in the presence of numerous local minima in the objective functional. A wavelet multiscale method is introduced and applied to the inversion of Maxwell equations. The inverse problem is decomposed into multiple scales with wavelet transform, and hence the original problem is reformulated to a set of sub-inverse problems corresponding to different scales, which can be solved successively according to the size of scale from the shortest to the longest. The stable and fast regularized Gauss-Newton method is applied to each scale. Numerical results show that the proposed method is effective, especially in terms of wide convergence, computational efficiency and precision.
基金TheNationalNaturalScienceFoundationofChina (No .6 9774 0 2 4 )
文摘The conventional time function of electromechanical relays is hard to coordinate with other relays. In order to promote the application of inverse-time overcurrent relays, a new time function for microprocessor-type relay is proposed. The setting of the trip time for this relay is performed by determining the shortest trip time and the longest trip time, respectively. The results of analysis show that with the new time function, the inverse-time overcurrent relay is easy to coordinate with other relays and has a comparatively shorter trip time, and that the fault happens in the protective zone.
文摘This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or a localized function. This study finds that wavelet’s dual can be a harmonic which is not local. This finding leads to new CWT inversion formulas. It also justifies the concept of normal wavelet transform which is useful in time-frequency analysis and time-frequency filtering. This study also proves a law for CWT inversion: either wavelet or its dual must integrate to zero.
基金this research project is funded by a major science and technology project of Gansu province,“research on the complete set technology for highway construction in collapsible loess region of Gansu province”(No.1302GKDA009).
文摘Based on the fact that it is diffi cult to implement optimum inversion using 2D and 3D forward modeling with magnetic-source transient electromagnetics(TEM),this paper explores a novel approach to the implementation of 2D magnetic-source TEM inversion.In particular,we converted magnetic-source TEM data into magnetotelluric(MT)data and then used a 2D MT inversion method to implement a 2D magnetic-source TEM inversion interpretation.First,we studied the similarity between magnetic-source TEM waves and MT waves and between magnetic-source TEM all-time apparent resistivity and MT Cagniard apparent resistivity.Then,we selected an optimal time-frequency transformation coeffi cient to implement rapid time-frequency transformation of all-time TEM apparent resistivity to MT Cagniard apparent resistivity.Afterward,we conducted 1D pseudo-MT inversions of magnetic-source 1D TEM theoretical models.The 1D inversion results demonstrated that the diff erence between the inversion parameters and model parameters was small,while the MT 1D inversion method could be used to conduct magnetic 1D TEM inversion within a certain margin of error.We further conducted 2D pseudo-MT inversions of 3D magnetic-source TEM theoretical models,and the 2D inversion results indicated that selecting a joint 2D pseudo-MT transverse-electric(TE)and transverse-magnetic(TM)inversion method based on measuring the line above a 3D anomalous body can help to accurately implement a 2D inversion interpretation of the 3D TEM response.
基金This research was funded by the National Natural Science Foundation under Grant No.[41974151]by the Jiangsu Province Natural Science Foundation under Grant No.[BK20181360]+1 种基金by the Major Scientific and Technological Innovation Project of Shandong Province of China under Grant No.[2019JZZY010820]by the Shaanxi Province Science and Technology Innovation Guidance Special No.[2020CGHJ-005].
文摘The complex resistivity of coal and related rocks contains abundant physical property information,which can be indirectly used to study the lithology and microstructure of these materials.These aspects are closely related to the fluids inside the considered coal rocks,such as gas,water and coalbed methane.In the present analysis,considering different lithological structures,and using the Cole-Cole model,a forward simulation method is used to study different physical parameters such as the zero-frequency resistivity,the polarizability,the relaxation time,and the frequency correlation coefficient.Moreover,using a least square technique,a complex resistivity“inversion”algorithm is written.The comparison of the initial model parameters and those obtained after inversion is used to verify the stability and accuracy of such approach.The method is finally applied to primary-structure coal considered as the experimental sample for complex resistivity measurements.
基金supported by the National Natural Science Foundation of China(Grant No.11347171)the Natural Science Foundation of Hebei Province of China(Grant No.A2012108003)the Key Project of Educational Commission of Hebei Province of China(Grant No.ZD2014052)
文摘Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wavepacket obeying the quadratic time-dependent Hamiltonian(QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific timedependent periodic harmonic oscillator, the Berry phase is obtained exactly.
文摘In this paper, we investigate the elastic wave full-waveform inversion (FWI) based on the trust region method. The FWI is an optimization problem of minimizing the misfit between the observed data and simulated data. Usually</span><span style="font-family:"">,</span><span style="font-family:""> the line search method is used to update the model parameters iteratively. The line search method generates a search direction first and then finds a suitable step length along the direction. In the trust region method, it defines a trial step length within a certain neighborhood of the current iterate point and then solves a trust region subproblem. The theoretical methods for the trust region FWI with the Newton type method are described. The algorithms for the truncated Newton method with the line search strategy and for the Gauss-Newton method with the trust region strategy are presented. Numerical computations of FWI for the Marmousi model by the L-BFGS method, the Gauss-Newton method and the truncated Newton method are completed. The comparisons between the line search strategy and the trust region strategy are given and show that the trust region method is more efficient than the line search method and both the Gauss-Newton and truncated Newton methods are more accurate than the L-BFGS method.