Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-tempo...Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-temporal variability of ionosphere is made up of two major components that can be listed as spatio-temporal trends and secondary variabilities that are due to disturbances in the geomagnetic field, gravitational waves and coupling of seismic activities into the upper atmosphere and ionosphere. Some of these second order variabilities generate wave-like oscillations in the ionosphere which propagate at a certain frequency, duration and velocity. These oscillations cause major problems for navigation and guidance systems that utilize GNSS (Global Navigation Satellite Systems). In this study, the frequency and duration of wave-like oscillations are determined using a DFT (Discrete Fourier Transform) based algo- rithm over the STEC (slant total electron content) values estimated from single GPS (Global Positioning System) station. The performance of the developed method, namely IONOLAB-FFT, is first determined using synthetic oscillations with known frequencies and durations. Then, IONOLAB-FFr is applied to STEC data from various midlatitude GPS stations for detection of frequency and duration of both medium and large scale TIDs (traveling ionospheric disturbances). It is observed that IONOLAB-FFr can estimate TIDs with more than 80% accuracy for the following cases: frequencies from 0.6 mHz to 2.4 mHz and durations longer than 10 min; frequencies from 0.15 mHz to 0.6 mHz and durations longer than 50 min; fre- quencies higher than 0.29 mHz and durations longer than 50 rain.展开更多
OI 630.0 nm airglow observations,from a new observatory at Bom Jesus de Lapa,were used to study the interaction between EPBs(Equatorial Plasma Bubbles)and the MSTID(Medium-Scale Traveling Ionospheric Disturbance)over ...OI 630.0 nm airglow observations,from a new observatory at Bom Jesus de Lapa,were used to study the interaction between EPBs(Equatorial Plasma Bubbles)and the MSTID(Medium-Scale Traveling Ionospheric Disturbance)over the Northeast region in Brazil.On the night of September 16 to 17,2020,an EPB was observed propagating eastward,in an apparent fossil stage,until it interacted with a dark band electrified MSTID(e MSTID).After the interaction,four EPBs merged,followed by an abrupt southward development and bifurcations.Analysis of the data suggests that an eastward polarization electric field,induced by the dark band e MSTID,forced the EPB into an upward drift,growing latitudinally along the magnetic field lines and then bifurcating.展开更多
Larger-scale traveling ionospheric disturbances (LSTIDs) are studied using the total electron content (TEC) data observed from 246 GPS receivers in and around China during the medium storm on 28 May 2011. It is th...Larger-scale traveling ionospheric disturbances (LSTIDs) are studied using the total electron content (TEC) data observed from 246 GPS receivers in and around China during the medium storm on 28 May 2011. It is the first attempt to get the two-dimensional TEC perturbation maps in China. Two LSTID events are detected: one is in southwestern China before mid- night propagating from low to middle latitude to the distance of about 1200 km with the phase front extending to about 500 km, and the other is in northeastern China after midnight propagating from middle to low latitudes to the distance of about 1200 km with the phase front extending to nearly 1400 km. By using the multichannel maximum-entropy method, we get the propagation parameters of these two LSTIDs. The LSTID that occurs before midnight has a higher horizontal phase velocity and a larger damping rate corresponding to the after midnight LSTID, and this may be caused by the relatively large vertical back- ground TECo and high atmospheric temperature in the southwest of China before midnight. According to the variations of magnetic H component observed in high latitudes, the source region for the after midnight LSTID is likely to be located 1400-2600 km east of 140E and north of 42N; the before midnight LSTID is propably excited by the atmospheric gravity waves (AGWs) generated by the Joule heating of the equatorial electrojet.展开更多
In this paper, the variability characteristics of the global field of sea surface temperature (SST) anomaly are studied by complex principal component (c.p.c.) analysis, whose results are also compared with those of r...In this paper, the variability characteristics of the global field of sea surface temperature (SST) anomaly are studied by complex principal component (c.p.c.) analysis, whose results are also compared with those of real p.c. analysis. The data consist of 40 years of global SST monthly averages over latitudes from 42 5°S to 67 5°N. In the spatial domain, it is found that the distribution of the first complex loading amplitude is characterized by three areas of large values: the first one in the eastern and central equatorial Pacific Ocean, the second one in the northern tropical Indian Ocean and South China Sea, the third one in the northern Pacific Ocean. As it will be explained, this pattern may be considered as representative of El Nio mode. The first complex loading phase pattern shows a stationary wave in the Pacific (also revealed by real p.c. analysis) superimposed to an oscillating disturbance, propagating from the Pacific to Indian or the opposite way. A subsequent correlation analysis among different spatial points allows revealing disturbances actually propagating westward from the Pacific to the Indian Ocean, which could therefore represent reflected Rossby waves, i.e. the west phase of the signals that propagate disturbances of thermal structure in the tropical Pacific Ocean. In the time domain, a relation between the trend of the first complex principal component and the ENSO cycle is also established.展开更多
The paper examines the propagation direction and velocity of large-scale traveling ionospheric disturbances (LST1Ds) during extreme geomagnetic storms in the 23rd solar cycle (e.g., October 2003 and November 2003 s...The paper examines the propagation direction and velocity of large-scale traveling ionospheric disturbances (LST1Ds) during extreme geomagnetic storms in the 23rd solar cycle (e.g., October 2003 and November 2003 storms) using GPS observations. In the analysis, the time delay between the vertical total electron content (VTEC) structures at Scott Base, McMurdo, Davis and Casey GPS stations and the distance between these stations were the main parameters in the determination of LSTIDs propagation speed and direction. The observations during October and November 2003 storms show obvious time delay between the total electron content (TEC) enhancement signatures at these stations. The time delay suggests a movement of the ionospheric disturbances from higher to lower latitudes during the October storm with a velocity of 800-1 200 m/s and poleward propagation of LSTIDs during the November storm with a ve- locity of 300-400 m/s. The equatorward or poleward expansion of LSTIDs during the October and November 2003 storms is probably caused by the disturbances of the neutral temperature occurring close to the dayside convection throat or by the neutral wind oscillation induced by atmospheric gravity waves (AGW) launched from the aurora region.展开更多
Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-f...Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-field(<1000 km),regional(1000–5000 km),and far-field(5000–12000 km) global positioning system(GPS) observations.The results indicate that the near-field ionospheric perturbation that occurred 8–15 min after the cataclysmic eruption was mainly derived from the shock wave(~1000 m/s) generated by the blast,while the low-frequency branch with long-distance propagation characteristics over the regional and the far-field was mainly associated with atmospheric Lamb waves(~330 m/s).Moreover,the amplitude of disturbance and background total electron content(TEC) are related proportionally.The intensity of the volcanic eruption and the background ionospheric conditions determine the magnitude of ionospheric responses.TEC perturbations were invisible on the reference days.Furthermore,the source location and onset time were calculated using the ray tracing technique,which confirms that the Tonga event triggered the ionospheric anomaly beyond the crater.Finally,the change in the frequency of the perturbations coincided with the arrival of the initial tsunami,implying the generation of a meteotsunami.展开更多
文摘Ionosphere is an important layer of atmosphere which is under constant forcing from both below due to gravitational, geomagnetic and seismic activities, and above due to solar wind and galactic radiation. Spatio-temporal variability of ionosphere is made up of two major components that can be listed as spatio-temporal trends and secondary variabilities that are due to disturbances in the geomagnetic field, gravitational waves and coupling of seismic activities into the upper atmosphere and ionosphere. Some of these second order variabilities generate wave-like oscillations in the ionosphere which propagate at a certain frequency, duration and velocity. These oscillations cause major problems for navigation and guidance systems that utilize GNSS (Global Navigation Satellite Systems). In this study, the frequency and duration of wave-like oscillations are determined using a DFT (Discrete Fourier Transform) based algo- rithm over the STEC (slant total electron content) values estimated from single GPS (Global Positioning System) station. The performance of the developed method, namely IONOLAB-FFT, is first determined using synthetic oscillations with known frequencies and durations. Then, IONOLAB-FFr is applied to STEC data from various midlatitude GPS stations for detection of frequency and duration of both medium and large scale TIDs (traveling ionospheric disturbances). It is observed that IONOLAB-FFr can estimate TIDs with more than 80% accuracy for the following cases: frequencies from 0.6 mHz to 2.4 mHz and durations longer than 10 min; frequencies from 0.15 mHz to 0.6 mHz and durations longer than 50 min; fre- quencies higher than 0.29 mHz and durations longer than 50 rain.
基金supported by Coordenacao de Aperfeicoamento de Pessoal de Nível Superior(CAPES)by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq),under the processes 470589/2012-4,305461/2015-0,303511/2017-6,307653/2017-0,and 169815/2017-0the Fundacao de AmparoàPesquisa do Estado de Sao Paulo(FAPESP)under the process 2018/09066-8。
文摘OI 630.0 nm airglow observations,from a new observatory at Bom Jesus de Lapa,were used to study the interaction between EPBs(Equatorial Plasma Bubbles)and the MSTID(Medium-Scale Traveling Ionospheric Disturbance)over the Northeast region in Brazil.On the night of September 16 to 17,2020,an EPB was observed propagating eastward,in an apparent fossil stage,until it interacted with a dark band electrified MSTID(e MSTID).After the interaction,four EPBs merged,followed by an abrupt southward development and bifurcations.Analysis of the data suggests that an eastward polarization electric field,induced by the dark band e MSTID,forced the EPB into an upward drift,growing latitudinally along the magnetic field lines and then bifurcating.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40974089 & 41131066)the Chinese Academy of Sciences (Grant Nos. KZZDEW-01-2 & KGCXZ-EW-407-2)the National Key Basic Research Program of China (Grant No. 2011CB811405)
文摘Larger-scale traveling ionospheric disturbances (LSTIDs) are studied using the total electron content (TEC) data observed from 246 GPS receivers in and around China during the medium storm on 28 May 2011. It is the first attempt to get the two-dimensional TEC perturbation maps in China. Two LSTID events are detected: one is in southwestern China before mid- night propagating from low to middle latitude to the distance of about 1200 km with the phase front extending to about 500 km, and the other is in northeastern China after midnight propagating from middle to low latitudes to the distance of about 1200 km with the phase front extending to nearly 1400 km. By using the multichannel maximum-entropy method, we get the propagation parameters of these two LSTIDs. The LSTID that occurs before midnight has a higher horizontal phase velocity and a larger damping rate corresponding to the after midnight LSTID, and this may be caused by the relatively large vertical back- ground TECo and high atmospheric temperature in the southwest of China before midnight. According to the variations of magnetic H component observed in high latitudes, the source region for the after midnight LSTID is likely to be located 1400-2600 km east of 140E and north of 42N; the before midnight LSTID is propably excited by the atmospheric gravity waves (AGWs) generated by the Joule heating of the equatorial electrojet.
文摘In this paper, the variability characteristics of the global field of sea surface temperature (SST) anomaly are studied by complex principal component (c.p.c.) analysis, whose results are also compared with those of real p.c. analysis. The data consist of 40 years of global SST monthly averages over latitudes from 42 5°S to 67 5°N. In the spatial domain, it is found that the distribution of the first complex loading amplitude is characterized by three areas of large values: the first one in the eastern and central equatorial Pacific Ocean, the second one in the northern tropical Indian Ocean and South China Sea, the third one in the northern Pacific Ocean. As it will be explained, this pattern may be considered as representative of El Nio mode. The first complex loading phase pattern shows a stationary wave in the Pacific (also revealed by real p.c. analysis) superimposed to an oscillating disturbance, propagating from the Pacific to Indian or the opposite way. A subsequent correlation analysis among different spatial points allows revealing disturbances actually propagating westward from the Pacific to the Indian Ocean, which could therefore represent reflected Rossby waves, i.e. the west phase of the signals that propagate disturbances of thermal structure in the tropical Pacific Ocean. In the time domain, a relation between the trend of the first complex principal component and the ENSO cycle is also established.
基金Supported by the Project of Ministry of Science, Technology and Innovation, Malaysia (04-01-02-SF0559)
文摘The paper examines the propagation direction and velocity of large-scale traveling ionospheric disturbances (LST1Ds) during extreme geomagnetic storms in the 23rd solar cycle (e.g., October 2003 and November 2003 storms) using GPS observations. In the analysis, the time delay between the vertical total electron content (VTEC) structures at Scott Base, McMurdo, Davis and Casey GPS stations and the distance between these stations were the main parameters in the determination of LSTIDs propagation speed and direction. The observations during October and November 2003 storms show obvious time delay between the total electron content (TEC) enhancement signatures at these stations. The time delay suggests a movement of the ionospheric disturbances from higher to lower latitudes during the October storm with a velocity of 800-1 200 m/s and poleward propagation of LSTIDs during the November storm with a ve- locity of 300-400 m/s. The equatorward or poleward expansion of LSTIDs during the October and November 2003 storms is probably caused by the disturbances of the neutral temperature occurring close to the dayside convection throat or by the neutral wind oscillation induced by atmospheric gravity waves (AGW) launched from the aurora region.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42074024, 41890813 & 41976066)the Young Talent Promotion Project of the China Association for Science and Technology。
文摘Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-field(<1000 km),regional(1000–5000 km),and far-field(5000–12000 km) global positioning system(GPS) observations.The results indicate that the near-field ionospheric perturbation that occurred 8–15 min after the cataclysmic eruption was mainly derived from the shock wave(~1000 m/s) generated by the blast,while the low-frequency branch with long-distance propagation characteristics over the regional and the far-field was mainly associated with atmospheric Lamb waves(~330 m/s).Moreover,the amplitude of disturbance and background total electron content(TEC) are related proportionally.The intensity of the volcanic eruption and the background ionospheric conditions determine the magnitude of ionospheric responses.TEC perturbations were invisible on the reference days.Furthermore,the source location and onset time were calculated using the ray tracing technique,which confirms that the Tonga event triggered the ionospheric anomaly beyond the crater.Finally,the change in the frequency of the perturbations coincided with the arrival of the initial tsunami,implying the generation of a meteotsunami.