With the rapid growth of the aging population,pelvic floor dysfunction(PFD)has become a new type of high‑incidence disorder.This disorder can be caused by injury,functional deterioration,or coordination disorders of p...With the rapid growth of the aging population,pelvic floor dysfunction(PFD)has become a new type of high‑incidence disorder.This disorder can be caused by injury,functional deterioration,or coordination disorders of pelvic support structures,such as pelvic floor muscles,connective tissues,and pelvic floor muscle fiber.The symptoms can include dyssynergic defecation,fecal incontinence,overactive bladder,urinary incontinence,pelvic organ prolapse,hemorrhoids,sexual dysfunction,chronic urinary retention,and chronic pelvic pain.PFD often presents itself as a combination of symptoms involving urological,gynecological,anorectal,and psychological aspects.Under such circumstances,the development of multidisciplinary integrative diagnosis for PFD has become a trend.展开更多
With the continuous development of civil engineering,concrete crack treatment technology has become an important research field.This paper proposes treatment techniques for different types of cracks,including the prev...With the continuous development of civil engineering,concrete crack treatment technology has become an important research field.This paper proposes treatment techniques for different types of cracks,including the prevention and repair of surface cracks,the reinforcement and grouting of structural cracks,and the design and construction of controlled cracks through the analysis of the causes and classification of concrete cracks.The methods and suggestions proposed in this paper are practical and can improve the quality and safety of buildings.展开更多
Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of pr...Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural(environmental)systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice,applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand(BOD) and total suspended solid(TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid(TSS)(91.3%), chemical oxygen demand(COD)(84.3%), and nitrogen(i.e.,80.7% for ammonium(NH)4-N, 80.8% for nitrate(NO)3-N, and 75.4% for total nitrogen(TN))as compared to other wetland systems. Vertical subsurface flow(VSSF) CWs removed TSS(84.9%), BOD(87.6%), and nitrogen(i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN)more efficiently than horizontal subsurface flow(HSSF) CWs, while HSSF CWs(69.8%)showed better total phosphorus(TP) removal compared to VSSF CWs(60.1%). Floating treatment wetlands(FTWs) showed comparable removal efficiencies for BOD(70.7%),NH4-N(63.6%), and TP(44.8%) to free water surface(FWS) CW systems.展开更多
Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide.However,the application of CW for w...Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide.However,the application of CW for wastewater treatment in frigid climate presents special challenges.Wetland treatment of wastewater relies largely on biological processes,and reliable treatment is often a function of climate conditions.To date,the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate.This paper therefore highlights the practice and applications of treatment wetlands in cold climate.A comprehensive review of the effectiveness of contaminant removal in different wetland systems including:(1) free water surface(FWS) CWs;(2) subsurface flow(SSF) CWs;and(3) hybrid wetland systems,is presented.The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants.The strategies of wetland design and operation for performance intensification,such as the presence of plant,operational mode,effluent recirculation,artificial aeration and in-series design,which are crucial to achieve the sustainable treatment performance in cold climate,are also discussed.This study is conducive to further research for the understanding of CW design and treatment performance in cold climate.展开更多
A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water befo...A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface- and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m3/(m2.day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ~ 4.5%, 93.4% + 2.1%, 54.0% + 6.3%, 53.9% ~ 6.0% and 69.4% :t: 4.6%, respectively, which brought about an effective improvement of the fiver water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs.展开更多
This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems(CWs). Our aim was to assess the impact of configuration on treatment performance...This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems(CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100 g BOD5/(m2·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus(P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10 g P/(m2·day) based on the performance results obtained within the first16 months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance.展开更多
文摘With the rapid growth of the aging population,pelvic floor dysfunction(PFD)has become a new type of high‑incidence disorder.This disorder can be caused by injury,functional deterioration,or coordination disorders of pelvic support structures,such as pelvic floor muscles,connective tissues,and pelvic floor muscle fiber.The symptoms can include dyssynergic defecation,fecal incontinence,overactive bladder,urinary incontinence,pelvic organ prolapse,hemorrhoids,sexual dysfunction,chronic urinary retention,and chronic pelvic pain.PFD often presents itself as a combination of symptoms involving urological,gynecological,anorectal,and psychological aspects.Under such circumstances,the development of multidisciplinary integrative diagnosis for PFD has become a trend.
文摘With the continuous development of civil engineering,concrete crack treatment technology has become an important research field.This paper proposes treatment techniques for different types of cracks,including the prevention and repair of surface cracks,the reinforcement and grouting of structural cracks,and the design and construction of controlled cracks through the analysis of the causes and classification of concrete cracks.The methods and suggestions proposed in this paper are practical and can improve the quality and safety of buildings.
文摘Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural(environmental)systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice,applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand(BOD) and total suspended solid(TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid(TSS)(91.3%), chemical oxygen demand(COD)(84.3%), and nitrogen(i.e.,80.7% for ammonium(NH)4-N, 80.8% for nitrate(NO)3-N, and 75.4% for total nitrogen(TN))as compared to other wetland systems. Vertical subsurface flow(VSSF) CWs removed TSS(84.9%), BOD(87.6%), and nitrogen(i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN)more efficiently than horizontal subsurface flow(HSSF) CWs, while HSSF CWs(69.8%)showed better total phosphorus(TP) removal compared to VSSF CWs(60.1%). Floating treatment wetlands(FTWs) showed comparable removal efficiencies for BOD(70.7%),NH4-N(63.6%), and TP(44.8%) to free water surface(FWS) CW systems.
文摘Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide.However,the application of CW for wastewater treatment in frigid climate presents special challenges.Wetland treatment of wastewater relies largely on biological processes,and reliable treatment is often a function of climate conditions.To date,the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate.This paper therefore highlights the practice and applications of treatment wetlands in cold climate.A comprehensive review of the effectiveness of contaminant removal in different wetland systems including:(1) free water surface(FWS) CWs;(2) subsurface flow(SSF) CWs;and(3) hybrid wetland systems,is presented.The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants.The strategies of wetland design and operation for performance intensification,such as the presence of plant,operational mode,effluent recirculation,artificial aeration and in-series design,which are crucial to achieve the sustainable treatment performance in cold climate,are also discussed.This study is conducive to further research for the understanding of CW design and treatment performance in cold climate.
基金supported by the National Natural Science Foundation of China(No.50838005,51021140002)the Program for Innovative Research Team in Shaanxi(No.2013KCT-13)
文摘A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface- and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m3/(m2.day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ~ 4.5%, 93.4% + 2.1%, 54.0% + 6.3%, 53.9% ~ 6.0% and 69.4% :t: 4.6%, respectively, which brought about an effective improvement of the fiver water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs.
文摘This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems(CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100 g BOD5/(m2·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus(P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10 g P/(m2·day) based on the performance results obtained within the first16 months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance.