Dalbergia sissoo Roxb. is one of the promising multipurpose tree species of South Asia. Most of the plantations of D. sissoo from seeds are facing severe threats due to the die-back disease, which ultimately causes de...Dalbergia sissoo Roxb. is one of the promising multipurpose tree species of South Asia. Most of the plantations of D. sissoo from seeds are facing severe threats due to the die-back disease, which ultimately causes death of this potential tree-species within a few months. Vegetative propagation could avoid the die-back disease. Thirty mother trees of different age-groups of D. sissoo were selected for evaluating the rooting behaviour of branch cuttings from D. sissoo as influenced by auxins (IAA or IBA at 100, 200, 500 mg·L^-1), ages of mother trees (10, 4 and 2 years old) and different environment conditions, i.e., different mediums (soil and sand) or light conditions (in shade and open condition). The results show that application of IAA and IBA induced more numbers of cuttings (collected from 10-year-old mother trees) to root compared to control. Branch cuttings of D. sissoo collected from 10-year-old mother trees and planted in soil bed in open conditions had 100.0% of cuttings to root in IAA (100 mg·L^-1) and IBA (200 mg·L^-1) treatments. Both rooting medium (Soil and sand) influenced significantly (p〈0.05) on rooting response of branch cuttings. Soil medium was found to achieve maximum no. of branch cuttings to root, compared to sand medium.展开更多
The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the form...The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.展开更多
The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distributio...The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distribution mapping by electron backscatter diffraction show that the deep cryogenic process causes a decrease in the content of retained austenite and an increase in the volume fraction of η-carbide with increasing soaking time up to 48 h. The decrease in the content of retained austenite from ~1.23vol% to 0.48vol% suggests an isothermal martensitic transformation at 77 K. The η-type precipitates formed in deep cryogenic-treated martensite over 48 h have the Hirotsu and Nagakura orientation relation with the martensitic matrix. Furthermore, a high coherency between η-carbide and the martensitic matrix is observed by high-resolution transmission electron microscopy. The variations in macrohardness, yield strength, ultimate tensile strength, and ductility with soaking time in the deep cryogenic process show a peak/plateau trend.展开更多
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ...The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.展开更多
基金supported by Indian Council ofForestry Research and Education (ICFRE), Dehradun, 248 006, Uttarakhand, India
文摘Dalbergia sissoo Roxb. is one of the promising multipurpose tree species of South Asia. Most of the plantations of D. sissoo from seeds are facing severe threats due to the die-back disease, which ultimately causes death of this potential tree-species within a few months. Vegetative propagation could avoid the die-back disease. Thirty mother trees of different age-groups of D. sissoo were selected for evaluating the rooting behaviour of branch cuttings from D. sissoo as influenced by auxins (IAA or IBA at 100, 200, 500 mg·L^-1), ages of mother trees (10, 4 and 2 years old) and different environment conditions, i.e., different mediums (soil and sand) or light conditions (in shade and open condition). The results show that application of IAA and IBA induced more numbers of cuttings (collected from 10-year-old mother trees) to root compared to control. Branch cuttings of D. sissoo collected from 10-year-old mother trees and planted in soil bed in open conditions had 100.0% of cuttings to root in IAA (100 mg·L^-1) and IBA (200 mg·L^-1) treatments. Both rooting medium (Soil and sand) influenced significantly (p〈0.05) on rooting response of branch cuttings. Soil medium was found to achieve maximum no. of branch cuttings to root, compared to sand medium.
基金Project(51305386)supported by the National Natural Science Foundation of ChinaProject(E2013203093)supported by the Natural Science Foundation of Hebei Province,China
文摘The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy.
文摘The influence of soaking time in deep cryogenic treatment on the tensile and impact properties of low-alloy medium-carbon HY-TUF steel was investigated in this study. Microstructural studies based on phase distribution mapping by electron backscatter diffraction show that the deep cryogenic process causes a decrease in the content of retained austenite and an increase in the volume fraction of η-carbide with increasing soaking time up to 48 h. The decrease in the content of retained austenite from ~1.23vol% to 0.48vol% suggests an isothermal martensitic transformation at 77 K. The η-type precipitates formed in deep cryogenic-treated martensite over 48 h have the Hirotsu and Nagakura orientation relation with the martensitic matrix. Furthermore, a high coherency between η-carbide and the martensitic matrix is observed by high-resolution transmission electron microscopy. The variations in macrohardness, yield strength, ultimate tensile strength, and ductility with soaking time in the deep cryogenic process show a peak/plateau trend.
基金supported by National Natural Science Foundation of China (Grant No. 50521503)National Basic Research Program of China (973 Program, Grant No. 2007CB714704)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z406)
文摘The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.