As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con...As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
Long-term temperature variations inferred from high-resolution proxies provide an important context to evaluate the intensity of current warming.However,tem-perature reconstructions in humid southeastern China are sca...Long-term temperature variations inferred from high-resolution proxies provide an important context to evaluate the intensity of current warming.However,tem-perature reconstructions in humid southeastern China are scarce and particularly lack long-term data,limiting us to obtain a complete picture of regional temperature evolution.In this study,we present a well-verified reconstruction of winter-spring(January–April)minimum temperatures over southeastern China based on stable carbon isotopic(δ^(13)C)records of tree rings from Taxus wallichiana var.mairei from 1860 to 2014.This reconstruction accounted for 56.4%of the total observed variance.Cold periods occurred during the 1860s–1910s and 1960s–1970s.Although temperatures have had an upward trend since the 1920s,most of the cold extremes were in recent decades.The El Niño-Southern Oscillation(ENSO)variance acted as a key modulator of regional winter-spring minimum temperature variability.However,teleconnections between them were a nonlinear process,i.e.,a reduced or enhanced ENSO variance may result in a weakened or intensified temperature-ENSO relationship.展开更多
Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analy...Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analysis between MXD chronologies and instrumental records from Shihezi meteorological station showed that each chronology was significantly and positively correlated with the maximum monthly average temperature in July-August, and especially, the regional chronology (RC) was the most highly correlated variable (r=0.54, P〈0.001). Afterwards, the maximum average temperature in July-August was reconstructed using RC. Comparison among reconstructed temperature, observed values, and the drought index (Is) confirmed that precipitation would affect MXD when the absolute value of Is is greater than 1.5σ (|Is| 〉 2.5 during 1953-2008) or near to 1.5a over a 2-3 year period. The response characteristics are related to the semiarid climate of the study area. In dry years, lack of precipitation would limit the thickening of latewood cell walls and, as a result, impact MXD. Therefore, compared with relatively humid regions, the response of tree-ring MXD to air temperature similarly would be influenced by extreme moisture conditions in semiarid areas, and MXD, as a temperature proxy, should be used prudently on a limited scale.展开更多
Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive re...Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.展开更多
Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living conifer...Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living coniferous forests on the Altay Mountains provide a good example for carrying out the dendrohydrological studies. In this study, a regional composite tree-ring width chronology developed by Lariat sibirica Ledeb. and Picea obovata Ledeb. was used to reconstruct a 301-year annual (from preceding July to succeeding June) streamflow for the Haba River, which originates in the southern Altay Mountains, Xinjiang, China. Results indicated that the reconstructed streamflow series and the observations were fitting well, and explained 47.5% of the variation in the observed streamflow of 1957-2008. Moreover, floods and droughts in 1949-2000 were precisely captured by the streamflow reconstruction. Based on the frequencies of the wettest/driest years and decades, we identified the 19th century as the century with the largest occurrence of hydrological fluctuations for the last 300 years. After applying a 21-year moving average, we found five wet (1724-1758, 1780-1810, 1822-1853, 1931-1967, and 1986-2004) and four dry (1759-1779, 1811-1821, 1854-1930, and 1968-1985) periods in the streamflow reconstruction. Furthermore, four periods (1770-1796, 1816-1836, 1884-1949, and 1973-1997) identified by the streamflow series had an obvious increasing trend. The increasing trend of streamflow since the 1970s was the biggest in the last 300 years and coincided with the recent warming-wetting trend in northwestern China. A significant correlation between streamflow and precipitation in the Altay Mountains indicated that the streamflow reconstruction contained not only local, but also broad-scale, hydro-climatic signals. The 24-year, 12-year, and 2.2-4.5-year cycles of the reconstruction revealed that the streamflow variability of the Haba River may be influenced by solar activity and the atmosphere-ocean system.展开更多
Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temp...Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temperature of different periods of early half year, especially with January to August mean (JA) temperature, which means that JA temperature is one of the predominant limiting factors of tree growth in the Helan Mountain. Based on this analysis, we reconstructed JA temperature, and the explained variance is 43.3% (F=21.422, p〈0.001 ). The comparatively high temperature periods in the reconstruction were: 1805-1818 1828-1857, 1899-1907, 1919-1931 and 1968-1995; and the comparatively low temperatu re periods happened in 1858-1872, 1883-1895 and 1935-1953. Ten-year moving average curve shows three slow uplifting trends: 1766-1853, 1862-1931 and 1944-1995. Each temperature increase was followed by a sudden temperature decrease about 10 years, that is to say, the JA temperature in the Helan Mountain is characterized by slow increase and sudden decrease. The 70- and 10.77-year periodicities detected in the temperature series correspond to the Gleissberg (80-year) and Schwabe (11-year) periodicities of solar activity respectively, the 2.11-2.62 years cycles are considered to be influenced by QBO (Quasi-Biennial-Oscillation) and the local environmental change.展开更多
Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were...Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.展开更多
Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-...Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20<sup>th</sup> century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Pacific Decadal Oscillation (PDO) and El Ni?o–Southern Oscillation (ENSO).展开更多
Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation a...Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation and the tree-ring width since 1899 was reconstructed. The results of cross verification indicated that the conversion equation is stable and the reconstructed results are reliable. The result of reconstructed annual precipitation showed the remarkable fluctuation of precipitation and dry-to-wet variation before the 1940s. The smaller fluctuation and high frequent changes of precipitation occurred during the period of 1940s-1980s and after the 1980s the change trend of the precipitation became high periodic extent and low frequent. The study found that there were some coincidences with the climate change in Changling Mountains, Helan Mountains and the east of Qilian Mountains. The relatively dry periods in the beginning of 20th century, 1920s to 1930s, the end of the 20th century and 2004 to 2006 in the western Hedong sandy land of Ningxia accelerated the desertification, while the relatively humid period during the periods of the 1910s-1920s, 1930s-1940s and 1990s is favorable to prevent and control the desertification, and to weaken the climate warming and drying. The periods of annual precipitation variation in the western Hedong sandy land of Ningxia since 1899 are approximately 2-4 years, 5-7 years and 10 years.展开更多
A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochr...A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.展开更多
Long tree-ring chronologies can be developed by overlapping data from living trees with data from fossil trees through cross-dating.However,low-frequency climate signals are lost when standardizing tree-ring series du...Long tree-ring chronologies can be developed by overlapping data from living trees with data from fossil trees through cross-dating.However,low-frequency climate signals are lost when standardizing tree-ring series due to the"segment length curse".To alleviate the segment length curse and thus improve the standardization method for developing long tree-ring chronologies,here we first calculated a mean value for all the tree ring series by overlapping all of the tree ring series.The growth trend of the mean tree ring width(i.e.,cumulated average growth trend of all the series)was determined using ensemble empirical mode decomposition.Then the chronology was developed by dividing the mean value by the growth trend of the mean value.Our improved method alleviated the problem of trend distortion.Long-term signals were better preserved using the improved method than in previous detrending methods.The chronologies developed using the improved method were better correlated with climate than those developed using conservative methods.The improved standardization method alleviates trend distortion and retains more of the low-frequency climate signals.展开更多
Stable isotopes in tree-ring cellulose provide important data in ecological,archaeological,and paleoenvironmental researches,thereby,the demand for stable isotope analyses is increasing rapidly.Simultaneous measuremen...Stable isotopes in tree-ring cellulose provide important data in ecological,archaeological,and paleoenvironmental researches,thereby,the demand for stable isotope analyses is increasing rapidly.Simultaneous measurement of cellulose δC and δO values from tree rings would reduce the cost of isotopic commodities and improve the analytical efficiency compared with conventional separate measurement.In this study,we compared the δC and δO values of tree-ringα-cellulose from Tianshan spruce(Picea schrenkiana)in an arid site in the drainage basin of the Urumqi River in Xinjiang of northwestern China based on separate and simultaneous measurements,using the combustion method(at1050°C)and the high-temperature pyrolysis method(at 1350°C and 1400°C).We verified the results of simultaneous measurement using the outputs from separate measurement and found that both methods(separate and simultaneous)produced similar δC values.The two-point calibrated method improved the results(range and variation)of δC and δO values.The mean values,standard deviations,and trends of the tree-ring δC obtained by the combustion method were similar to those by the pyrolysis method followed by two-point calibration.The simultaneously measured δO from the pyrolysis method at 1400°C had a nearly constant offset with that the pyrolysis method at 1350°C due to isotopic-dependence on the reaction temperature.However,they showed similar variations in the time series.The climate responses inferred from simultaneously and separately measured δC and δO did not differ between the two methods.The tree-ring δC and δO values were negatively correlated with standardized precipitation evapotranspiration index from May to August.In addition,the δO was significantly correlated with temperature(positive),precipitation(negative),and relative humidity(negative)from May to August.The tree-ring δC and δO values determined simultaneously through the high-temperature pyrolysis method could produce acceptable and reliable stable isotope series.The simultaneous isotopic measurement can greatly reduce the cost and time requirement compared with the separate isotopic measurement.These results are consistent with the previous studies at humid sites,suggesting that the simultaneous determination of δC and δO in tree-ringα-cellulose can be used in wide regions.展开更多
Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An im...Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.展开更多
Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data,...Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data, the influence of precipitation, mean temperature and mean minimum temperature at yearly, seasonal and monthly scales on the tree-ring growth of Picea crossifolia was studied at treeline ecotones in the Qilian Mountains, northwestern China. The results show that growing season temperatures of previous and current years are important limiting factors on tree-ring growth, particularly June mean temperature and mean minimum temperature of current year. The precipitations in the previous winter and current spring have a positive correlation, and in the current fall has a negative correlation with tree-ring growth, but these correlations are not significant. Our results suggest that temperature controls tree-ring growth more strongly than precipitation at treeline ecotones in the Qilian Mountains.展开更多
There exists a logarithmic linear correlation, i. e., In C'(Z, t) = a(Z) + b(Z) ln(Z, t) where Z is the atomicnumber of element and t the year when tree ring grows between the chemical element contents in tree rin...There exists a logarithmic linear correlation, i. e., In C'(Z, t) = a(Z) + b(Z) ln(Z, t) where Z is the atomicnumber of element and t the year when tree ring grows between the chemical element contents in tree ringsC(Z, t) and those in the soils near the tree roots C'(Z, t).By determining the elemental contents of the annual growth rings of trees, we could establish the chrono-sequences of elemental contents in the tree rings, thus calculating that of the soil, that is, reproducing thedynamic changes of contents of elements in the soil C'(Z, t). The background values of elements in the soilunder site conditions of the tree could be estimated from the minimum C(Z, t_0) in the chrono-sequences ofelemental contents in the tree rings.展开更多
Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information con...Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information contained in tree-ring width chronology was obtained through linear regression reconstruction models of annual August–July precipitation and annual water discharge of the Selenga River during the period 1767–2015. Comparison of the smoothed series allowed estimating long-term variation component of these moisture regime parameters with a high precision. At the same time, regional drought indices are less correlated with pine radial growth, because they have contribution of the other environmental variables, which are much less reflected in the tree-ring of the investigated pine forest stands. Reconstructed dynamic of the moisture regime parameters is supported by documental evident of many socially significant events in the regional history, such as crop failures caused by both droughts and floods, and catastrophic fire in the Irkutsk City in 1879. Also, dependence of the amount of precipitation in the study area on the atmospheric circulation in Central Asia is revealed to have a similar pattern with other regions, i.e., a negative relationship of precipitation with the development of large high atmospheric pressure area within its center in the Altai and Tianshan mountains.展开更多
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ...Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.展开更多
Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and ...Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.展开更多
The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilitie...The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by the National Science Foundation of China(42101082)the Science Foundation of Fujian Province(2023J01496).
文摘Long-term temperature variations inferred from high-resolution proxies provide an important context to evaluate the intensity of current warming.However,tem-perature reconstructions in humid southeastern China are scarce and particularly lack long-term data,limiting us to obtain a complete picture of regional temperature evolution.In this study,we present a well-verified reconstruction of winter-spring(January–April)minimum temperatures over southeastern China based on stable carbon isotopic(δ^(13)C)records of tree rings from Taxus wallichiana var.mairei from 1860 to 2014.This reconstruction accounted for 56.4%of the total observed variance.Cold periods occurred during the 1860s–1910s and 1960s–1970s.Although temperatures have had an upward trend since the 1920s,most of the cold extremes were in recent decades.The El Niño-Southern Oscillation(ENSO)variance acted as a key modulator of regional winter-spring minimum temperature variability.However,teleconnections between them were a nonlinear process,i.e.,a reduced or enhanced ENSO variance may result in a weakened or intensified temperature-ENSO relationship.
基金Supported by Natural Science Foundation of China(41275120,41271120,41301041)Strategic Science and Technology Planning Project of Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences(2012ZD001)~~
文摘Based on two tree-ring maximum latewood density (MXD) chronologies of Picea schrenkiana from the Manas River Basin, Xinjiang, the response characteristics of MXD to climate variation was discussed. Correlation analysis between MXD chronologies and instrumental records from Shihezi meteorological station showed that each chronology was significantly and positively correlated with the maximum monthly average temperature in July-August, and especially, the regional chronology (RC) was the most highly correlated variable (r=0.54, P〈0.001). Afterwards, the maximum average temperature in July-August was reconstructed using RC. Comparison among reconstructed temperature, observed values, and the drought index (Is) confirmed that precipitation would affect MXD when the absolute value of Is is greater than 1.5σ (|Is| 〉 2.5 during 1953-2008) or near to 1.5a over a 2-3 year period. The response characteristics are related to the semiarid climate of the study area. In dry years, lack of precipitation would limit the thickening of latewood cell walls and, as a result, impact MXD. Therefore, compared with relatively humid regions, the response of tree-ring MXD to air temperature similarly would be influenced by extreme moisture conditions in semiarid areas, and MXD, as a temperature proxy, should be used prudently on a limited scale.
基金This study was supported by the National Natural Science Foundation of China(Grant Number:42007407,42022059)the Sino-German mobility program(M-0393)+1 种基金the Key Research Program of the Institute of Geology and Geophysics(CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team(JCTD-2021-05).
文摘Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.
基金supported by the National Natural Science Foundation of China (41275120, 41605047)the Shanghai Cooperation Organization Science and Technology Partnership (2017E01032)+1 种基金the Special Foundation for Asian Regional Cooperation (Climate Reconstruction of Tian Shan in China, Kyrgyzstan and Tajikistan)the Autonomous Region Youth Science and Technology Innovation Talents Training Project (qn2015bs025)
文摘Reconstructing the hydrological change based on dendrohydrological data has important implications for understanding the dynamic distribution and evolution pattern of a given river. The widespread, long-living coniferous forests on the Altay Mountains provide a good example for carrying out the dendrohydrological studies. In this study, a regional composite tree-ring width chronology developed by Lariat sibirica Ledeb. and Picea obovata Ledeb. was used to reconstruct a 301-year annual (from preceding July to succeeding June) streamflow for the Haba River, which originates in the southern Altay Mountains, Xinjiang, China. Results indicated that the reconstructed streamflow series and the observations were fitting well, and explained 47.5% of the variation in the observed streamflow of 1957-2008. Moreover, floods and droughts in 1949-2000 were precisely captured by the streamflow reconstruction. Based on the frequencies of the wettest/driest years and decades, we identified the 19th century as the century with the largest occurrence of hydrological fluctuations for the last 300 years. After applying a 21-year moving average, we found five wet (1724-1758, 1780-1810, 1822-1853, 1931-1967, and 1986-2004) and four dry (1759-1779, 1811-1821, 1854-1930, and 1968-1985) periods in the streamflow reconstruction. Furthermore, four periods (1770-1796, 1816-1836, 1884-1949, and 1973-1997) identified by the streamflow series had an obvious increasing trend. The increasing trend of streamflow since the 1970s was the biggest in the last 300 years and coincided with the recent warming-wetting trend in northwestern China. A significant correlation between streamflow and precipitation in the Altay Mountains indicated that the streamflow reconstruction contained not only local, but also broad-scale, hydro-climatic signals. The 24-year, 12-year, and 2.2-4.5-year cycles of the reconstruction revealed that the streamflow variability of the Haba River may be influenced by solar activity and the atmosphere-ocean system.
基金National Natural Science Foundation of China, No.40525004 No.40599420+2 种基金 No.90211081 No.40531003 No.40121303
文摘Tree-ring standardized chronologies are developed by 78 cores collected from the eastern and western Helan Mountain. Statistical analysis shows that both the STD and RES chronologies correlate negatively with the temperature of different periods of early half year, especially with January to August mean (JA) temperature, which means that JA temperature is one of the predominant limiting factors of tree growth in the Helan Mountain. Based on this analysis, we reconstructed JA temperature, and the explained variance is 43.3% (F=21.422, p〈0.001 ). The comparatively high temperature periods in the reconstruction were: 1805-1818 1828-1857, 1899-1907, 1919-1931 and 1968-1995; and the comparatively low temperatu re periods happened in 1858-1872, 1883-1895 and 1935-1953. Ten-year moving average curve shows three slow uplifting trends: 1766-1853, 1862-1931 and 1944-1995. Each temperature increase was followed by a sudden temperature decrease about 10 years, that is to say, the JA temperature in the Helan Mountain is characterized by slow increase and sudden decrease. The 70- and 10.77-year periodicities detected in the temperature series correspond to the Gleissberg (80-year) and Schwabe (11-year) periodicities of solar activity respectively, the 2.11-2.62 years cycles are considered to be influenced by QBO (Quasi-Biennial-Oscillation) and the local environmental change.
基金funded by National Natural Science Foundation of China(No.31370587)
文摘Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.
基金supported by the National Natural Science Foundation of China(91025002,30970492)the National Key Technology Research&Development Program(2012BAC08B05)the Key Project of the Chinese Academy of Sciences(KZZD-EW-04-05)
文摘Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20<sup>th</sup> century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Pacific Decadal Oscillation (PDO) and El Ni?o–Southern Oscillation (ENSO).
基金supported by the National Natural Science Foundation of China (40801004, 40671184)the Research Fund for the Doctoral Program of Higher Education (20070027019)
文摘Based on the analysis of the correlation between the tree-ring width of Pinus tabulaeformis and the climate factors in the western Hedong sandy land of Ningxia, a conversion equation between the annual precipitation and the tree-ring width since 1899 was reconstructed. The results of cross verification indicated that the conversion equation is stable and the reconstructed results are reliable. The result of reconstructed annual precipitation showed the remarkable fluctuation of precipitation and dry-to-wet variation before the 1940s. The smaller fluctuation and high frequent changes of precipitation occurred during the period of 1940s-1980s and after the 1980s the change trend of the precipitation became high periodic extent and low frequent. The study found that there were some coincidences with the climate change in Changling Mountains, Helan Mountains and the east of Qilian Mountains. The relatively dry periods in the beginning of 20th century, 1920s to 1930s, the end of the 20th century and 2004 to 2006 in the western Hedong sandy land of Ningxia accelerated the desertification, while the relatively humid period during the periods of the 1910s-1920s, 1930s-1940s and 1990s is favorable to prevent and control the desertification, and to weaken the climate warming and drying. The periods of annual precipitation variation in the western Hedong sandy land of Ningxia since 1899 are approximately 2-4 years, 5-7 years and 10 years.
基金funded by the National Basic Research Program of China (973 Program) (No.2010CB950104)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No.2009S1-38)+1 种基金the Chinese Academy of Sciences (CAS) 100 Talents Project (29082762)the NSFC (Grant no.40871091)
文摘A tree-ring width chronology of 442 years(1567-2008) was developed from Tibetan junipers(S.tibetica) derived from south Tibet in western China.Three versions of chronology were produced according to standard dendrochronological techniques.The correlation and response analysis displays a high correlation between the standard tree ring-width chronology and observed annual mean precipitation series during the period 1961-2008.Based on a linear regression model,an annual(prior August to current July) precipitation for the past 229 years was reconstructed.This is the first well-calibrated precipitation reconstruction for the Nanggarze region,south Tibet.The results show that relatively wet years with above-average precipitation occurred in 1780-1807,1854-1866,1886-1898,1904-1949,1967-1981 and 2000-2008,whereas relatively dry years with below-average precipitation prevailed during 1808-1853,1867-1885,1899-1903,1950-1966 and 1982-1999.Common dry/wet periods during 1890s,1910s,1940s-1960s and 1980s were also identified from other moisture reconstructions of nearby regions,indicating a synchronous climatic variation in south Tibet.Abrupt change beginning in 1888 was detected,revealing a transition from wet to dry conditions in south Tibet.Power spectrum analysis reveals significant cycles of 28-year,5.5-5.6-year and 3.3-year during the past 200 years.
文摘Long tree-ring chronologies can be developed by overlapping data from living trees with data from fossil trees through cross-dating.However,low-frequency climate signals are lost when standardizing tree-ring series due to the"segment length curse".To alleviate the segment length curse and thus improve the standardization method for developing long tree-ring chronologies,here we first calculated a mean value for all the tree ring series by overlapping all of the tree ring series.The growth trend of the mean tree ring width(i.e.,cumulated average growth trend of all the series)was determined using ensemble empirical mode decomposition.Then the chronology was developed by dividing the mean value by the growth trend of the mean value.Our improved method alleviated the problem of trend distortion.Long-term signals were better preserved using the improved method than in previous detrending methods.The chronologies developed using the improved method were better correlated with climate than those developed using conservative methods.The improved standardization method alleviates trend distortion and retains more of the low-frequency climate signals.
基金funded by the National Natural Science Foundation of China (41501049, 41571196)the Self-determination Project of the State Key Laboratory of Cryospheric Sciences (SKLCS-ZZ-2018)+3 种基金the "Light of West China" Program of the Chinese Academy of Sciencesthe Youth Innovation Promotion Association, Chinese Academy of Sciences (2016372)the Chinese Scholarship Council (201704910171)the Fundamental Research Funds for the Central Universities (GK201801007)
文摘Stable isotopes in tree-ring cellulose provide important data in ecological,archaeological,and paleoenvironmental researches,thereby,the demand for stable isotope analyses is increasing rapidly.Simultaneous measurement of cellulose δC and δO values from tree rings would reduce the cost of isotopic commodities and improve the analytical efficiency compared with conventional separate measurement.In this study,we compared the δC and δO values of tree-ringα-cellulose from Tianshan spruce(Picea schrenkiana)in an arid site in the drainage basin of the Urumqi River in Xinjiang of northwestern China based on separate and simultaneous measurements,using the combustion method(at1050°C)and the high-temperature pyrolysis method(at 1350°C and 1400°C).We verified the results of simultaneous measurement using the outputs from separate measurement and found that both methods(separate and simultaneous)produced similar δC values.The two-point calibrated method improved the results(range and variation)of δC and δO values.The mean values,standard deviations,and trends of the tree-ring δC obtained by the combustion method were similar to those by the pyrolysis method followed by two-point calibration.The simultaneously measured δO from the pyrolysis method at 1400°C had a nearly constant offset with that the pyrolysis method at 1350°C due to isotopic-dependence on the reaction temperature.However,they showed similar variations in the time series.The climate responses inferred from simultaneously and separately measured δC and δO did not differ between the two methods.The tree-ring δC and δO values were negatively correlated with standardized precipitation evapotranspiration index from May to August.In addition,the δO was significantly correlated with temperature(positive),precipitation(negative),and relative humidity(negative)from May to August.The tree-ring δC and δO values determined simultaneously through the high-temperature pyrolysis method could produce acceptable and reliable stable isotope series.The simultaneous isotopic measurement can greatly reduce the cost and time requirement compared with the separate isotopic measurement.These results are consistent with the previous studies at humid sites,suggesting that the simultaneous determination of δC and δO in tree-ringα-cellulose can be used in wide regions.
基金financially supported by the National Natural Science Foundation of China(31901093,32220103010,32192431,31722013)National Key R&D Program of China(2020YFA0608100,2022YFF1302505)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-DQC019)。
文摘Discerning vulnerability differences among different aged trees to drought-driven growth decline or to mortality is critical to implement age-specific countermeasures for forest management in water-limited areas.An important species for afforestation in dry environments of northern China,Mongolian pine(Pinus sylvestris var.mongolica Litv.)has recently exhibited growth decline and dieback on many sites,particularly pronounced in old-growth plantations.However,changes in response to drought stress by this species with age as well as the underlying mechanisms are poorly understood.In this study,tree-ring data and remotely sensed vegetation data were combined to investigate variations in growth at individual tree and stand scales for young(9-13 years)and aging(35-52 years)plantations of Mongolian pine in a water-limited area of northern China.A recent decline in tree-ring width in the older plantation also had lower values in satellited-derived normalized difference vegetation indices and normalized difference water indices relative to the younger plantations.In addition,all measured growth-related metrics were strongly correlated with the self-calibrating Palmer drought severity index during the growing season in the older plantation.Sensitivity of growth to drought of the older plantation might be attributed to more severe hydraulic limitations,as reflected by their lower sapwood-and leaf-specific hydraulic conductivities.Our study presents a comprehensive view on changes of growth with age by integrating multiple methods and provides an explanation from the perspective of plant hydraulics for growth decline with age.The results indicate that old-growth Mongolian pine plantations in water-limited environments may face increased growth declines under the context of climate warming and drying.
基金supported by the Major Research Plan of National Natural Science Foundation of China (No. 91025014),the National Natural Science Foundation of China (No. 30800147)
文摘Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data, the influence of precipitation, mean temperature and mean minimum temperature at yearly, seasonal and monthly scales on the tree-ring growth of Picea crossifolia was studied at treeline ecotones in the Qilian Mountains, northwestern China. The results show that growing season temperatures of previous and current years are important limiting factors on tree-ring growth, particularly June mean temperature and mean minimum temperature of current year. The precipitations in the previous winter and current spring have a positive correlation, and in the current fall has a negative correlation with tree-ring growth, but these correlations are not significant. Our results suggest that temperature controls tree-ring growth more strongly than precipitation at treeline ecotones in the Qilian Mountains.
文摘There exists a logarithmic linear correlation, i. e., In C'(Z, t) = a(Z) + b(Z) ln(Z, t) where Z is the atomicnumber of element and t the year when tree ring grows between the chemical element contents in tree ringsC(Z, t) and those in the soils near the tree roots C'(Z, t).By determining the elemental contents of the annual growth rings of trees, we could establish the chrono-sequences of elemental contents in the tree rings, thus calculating that of the soil, that is, reproducing thedynamic changes of contents of elements in the soil C'(Z, t). The background values of elements in the soilunder site conditions of the tree could be estimated from the minimum C(Z, t_0) in the chrono-sequences ofelemental contents in the tree rings.
基金funded by the Russian Foundation for Basic Research (17-04-00315)the Russian Science Foundation (14-14-00219)
文摘Regional tree-ring width chronology of the Scots pine (Pinus sylvestris L.) was constructed from 8 sites in the forest-steppe belt situated in the foothills of the Selenga River basin, Russia. Moisture information contained in tree-ring width chronology was obtained through linear regression reconstruction models of annual August–July precipitation and annual water discharge of the Selenga River during the period 1767–2015. Comparison of the smoothed series allowed estimating long-term variation component of these moisture regime parameters with a high precision. At the same time, regional drought indices are less correlated with pine radial growth, because they have contribution of the other environmental variables, which are much less reflected in the tree-ring of the investigated pine forest stands. Reconstructed dynamic of the moisture regime parameters is supported by documental evident of many socially significant events in the regional history, such as crop failures caused by both droughts and floods, and catastrophic fire in the Irkutsk City in 1879. Also, dependence of the amount of precipitation in the study area on the atmospheric circulation in Central Asia is revealed to have a similar pattern with other regions, i.e., a negative relationship of precipitation with the development of large high atmospheric pressure area within its center in the Altai and Tianshan mountains.
基金supported by the National Natural Science Foundation of China (No.42077417,41671042).
文摘Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and tree-ring chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June-August and the com-bination of temperatures and moisture in the current May-July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBLO1 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBLO2 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May-July,while on the western slope,it was affected by the relative humidity in the previous June-August,the current May-July and the precipitation in the current May-July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.
基金the National Natural Science Foundation of China(No.4207741741671042)。
文摘Global warming will affect growth strategies and how trees will adapt.To compare the response of tree radial growth to climate warming in different slope directions,samples of Pinus armandii Franch were collected and treering chronologies developed on northern and western slopes from the Lubanling in the Funiu Mountains.Correlation analyses showed that two chronologies were mainly limited by temperatures in the previous June–August and the combination of temperatures and moisture in the current May–July.The difference of the climate response to slopes was small but not negligible.Radial growth of the LBL01 site on the northern slope was affected by the combined maximum and minimum temperatures,while that of the LBL02 site was affected by maximum temperatures.With regards to moisture,radial growth of the trees on the north slope was influenced by the relative humidity in the current May–July,while on the western slope,it was affected by the relative humidity in the previous June–August,the current May–July and the precipitation in the current May–July.With the change in climate,the effects of the main limiting factors on growth on different slopes were visible to a certain extent,but the differences in response of trees on different slopes gradually decreased,which might be caused by factors such as different slope directions and the change in diurnal temperature range.These results may provide information for forest protection and ecological construction in this region,and a scientific reference for future climate reconstruction.
基金supported by the National Natural Science Foundation of China(42107476,41877426)the Hunan Provincial Natural Science Foundation of China(2021JJ41075)+3 种基金the China Postdoctoral Science Foundation(2020M682600)the Science and Technology Innovation Program of Hunan Province(2020RC2058)the Research Foundation of the Bureau of Education in Hunan Province(20B627)China Scholarship Council(CSC,no.202206600004,to DY).
文摘The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.