Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lyi...Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lying the impact of drought on tree growth remains unre-solved.In this study,earlywood and latewood tree-ring growth,δ^(13)C,andδ^(18)O chronologies of Picea mongolica from 1900 to 2013 were developed to clarify the intra-and inter-annual tree-ring growth responses to increasingly fre-quent droughts.The results indicate that annual basal area increment residuals(BAI_(res)),which removed tree age and size effects,have significantly decreased since 1960.How-ever,the decreasing trend of earlywood BAI_(res) was higher than that of latewood.Climate response analysis suggests that the dominant parameters for earlywood and latewood proxies(BAI_(res),δ^(13)C andδ^(18)O)were drought-related climate variables(Palmer drought severity index,temperature,rela-tive humidity,and vapor pressure deficit).The most signifi-cant period of earlywood and latewood proxies’responses to climate variables were focused on June-July and July-August,respectively.BAI_(res),andδ^(13)C were significantly affected by temperature and moisture conditions,whereasδ^(18)O was slightly affected.Decreasing stomatal conduct-ance due to drought outweighed the influence of increasing CO_(2) on intrinsic water use efficiency(iWUE),and ultimately led to a decline in BAI_(res).Compared to latewood,the faster decreasing BAI_(res) and smaller increasing iWUE of early-wood suggested trees were more vulnerable to water stress in the early growing season.Our study provides insights into the inter-and intra-annual mechanisms of tree-ring growth in semi-arid regions under rising CO_(2) and climate change.展开更多
The effect of pruning severity on tree growth was analyzed by change point detection using segmented regression. The present study applied this analysis to a well-known published data set including diameter growth res...The effect of pruning severity on tree growth was analyzed by change point detection using segmented regression. The present study applied this analysis to a well-known published data set including diameter growth response, tree age, pruning severity and pretreatment crown size. First, multiple regression analysis was performed to assess the effect of tree age, pruning severity and pretreatment crown size on diameter growth response. Next, segmented regression analysis was performed to assess the effect of pruning severity on diameter growth response. The results of the multiple regression showed that diameter growth response was significantly influenced by pruning severity and pretreatment crown size. The results of the segmented regression showed that in the whole data set, an abrupt change toward a decrease in diameter growth response was detected at 25% of the live crown removed. However, in the group of fully crowned and open-grown, diameter growth response continuously decreased with increasing pruning severity with no significant abrupt change, whereas in the group of 70% - 90% live crown, diameter growth response did not significantly decrease up to the break point (53% crown removed) and then abruptly decreased. This may be the first study to show the numerical evaluation of the effect of pruning severity on tree growth by change point analysis.展开更多
The impact of lag effects produced by disturbances on primary production has been a major concern among ecologists during the last decade.Sudden and extreme climatic events are imposing drastic reductions in radial gr...The impact of lag effects produced by disturbances on primary production has been a major concern among ecologists during the last decade.Sudden and extreme climatic events are imposing drastic reductions in radial growth of trees as evidenced in tree-rings series Dendrochronological samples are obtained at tree level but analyzed at an aggregated scale(i.e.,mean chronologies),although aggregating tree-ring chronology on a regional scale may reduce the possibility of studying the variability of individual tree response to drought,by amplifying the average population response.Here,we conducted experimental research in which 370 trees of 5 species were analyzed to assess the potential statistical and scaling issues that may occur when using regressionbased methods to analyze ecosystem responses to disturbances.Drought legacy effects were quantified using individual and aggregated scales.Then,lag effects were validated using confidence and prediction intervals to identify values falling outside the certainty of the climate-growth model Individual scale legacy effects contrasted with confidence intervals were commonly distributed across species but were scarce when compared with prediction intervals.The analysis of aggregated scale legacies detected significant growth reductions when validated using prediction intervals;however,individual scale legacy lag effects were not detected.This finding directly contrasts the results obtained when using an aggregated scale.Our results provide empirical evidence on how aggregating ecological data to infer processes that emerge from an individual scale can lead to distorted conclusions.We therefore encourage the use of individual based statistical and ecological procedures to analyze tree rings as a means of further understanding the ecosystem responses to disturbances.展开更多
Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients, B, Mo, Cu, Zn, Fe, and Mn, in soils derived from various parent materials in the...Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients, B, Mo, Cu, Zn, Fe, and Mn, in soils derived from various parent materials in the forest area of Taihu Lake region in southeast China. The results showed that the dry weight of individual current-year needle of Chinese fir (Cunninghamia lanceolata) grown on the soi1 derived from granite parent rock was increased by 8% and 13% in comparison with that grown on the soils derived from sandstone and ash-tuff parent rock, respectively. And such dry weight of loblolly pine (Pinus taeda) grown on the soil derived from sandstone parent rock was increased by 21% in comparison with that on the soil derived from ash-tuff parent rock. One of the reasons for those results was that micronutrients content in the soil derived from ash-tuff parent rock were not sufficient to meet the requirement of the growth of Chinese fir and loblolly pine, i.e., micronutrients in soil were deficient and/or induced deficient. The amounts of Cu, Zn, Fe, and Mn uptake by Chinese fir and loblolly pine were in agreement with the contents of available micronutrients in soil respectively, except for B and Mo. Meanwhile, there might exist an "antagonism" between the uptake of B versus Mo by trees, although more studies are needed to confirm it. Regression analysis indicated that amount of a soil available micronutrient was correlated to the type of parent material and its total amount in the forest floor, except for B. The F test identified that the correlation of each equation reached the significant level to different extents, respectively. The t test confirmed that amount of available forms was mainly depended on the type of parent material for Mo, Cu, Zn and Mn but on the forest floor for Fe. There was a feedback effect of forest stand on the amount of soil available micronutrients. The ability of accumulating available micronutrients in soil was better by the sawtooth oak (Quercus acutissima) stand than by the Chinese fir stand (except for B). The ability of accumulating available Zn, Fe, Mn and Mo in soil was better by the Chinese fir stand than by the loblolly pine stand, while as for available B and Cu, by the latter was better than by the former. When discussing the effect of forest stand on the amount of soil available micronutrients, not only the amount of micronutrient in the forest floor and the parent materials but also the amount of micronutrient taken up by current-year needles have to be considered.展开更多
Plantations of tropical species axe becoming an increasingly important source of wood. However, it is important that research trials focus not only on tree growth performance, but also on wood quality. The aims of thi...Plantations of tropical species axe becoming an increasingly important source of wood. However, it is important that research trials focus not only on tree growth performance, but also on wood quality. The aims of this study were to assess the growth performance of six commercially and ecologically important tree species from separate plantation trials in Indonesia and to determine the relationships between tree growth and wood quality in terms of the dynamic modulus of elasticity (MOE) and wood density. Forty-eight 7-year Maesopsis eminii Engl. and thirty-five 9-year specimens (7 each of 5 Shorea spp.) were selected from two trials. The MOE, based on acoustic velocity, was indirectly measured to evaluate wood stiffness. Tree-growth performance was evaluated, and correlations between growth traits and acoustic velocity as well as density and wood stiffness properties were estimated. The growth performance of M. eminii in terms of tree volume was significantly different in three different cate- gories of growth (i.e. fast, medium, slow). Of the five Shorea spp. studied, Shorea leprosula Miq. had the highest growth rate, as expected since it is known to be a fastgrowing Shorea species. Indirect measurement of wood quality by means of non-destructive ultrasonic methods showed a weak negative correlation between tree volume and acoustic velocity and dynamic MOE. Although each fast-growing tree could reach a merchantable size faster than other varieties or species, wood traits of various species tested were not significantly different based on tree growth rate performance. The findings from this study could be used to improve selection criteria in future breeding trials; indirect measurements of the dynamic modulus of elasticity can be used in mass pre-selection of genetic materials, to choose the most-promising material for in-depth evaluation.展开更多
The origin of a seed strongly impacts its traits, and both origin and seed traits influence seed germination and seedling development. However, in many instances, this effect on the seedling does not persist into adul...The origin of a seed strongly impacts its traits, and both origin and seed traits influence seed germination and seedling development. However, in many instances, this effect on the seedling does not persist into adulthood, and little is known about how seed traits and original environment affect seedling/tree growth over time. In this study, seed size, seed mass, seedling/tree growth and origins were collected and determined for 23 provenances of Quercus acutissima from across China. Origin variables correlated well with seed size and seed mass. In stepwise multiple regressions, a longitudinal aridity index explained 49.2-68.7% of the total variation in seed size and mass, while only seed width was correlated with seedling/tree height (H) and diameter at the ground (D) from seed traits and origins. The total variance in H and D explained by the models decreased over time, for example, the R <sup>2</sup> value of the models for H declined from 0.477 in the first year to 0.224 in the fourth year; no models was significant in the fifth year. These results indicate that seed size, regulated by the longitudinal aridity index strongly impacted seedling and tree growth, but the strength of the influence decreased over time, and disappeared after 4 years.展开更多
Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.Howev...Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.However,as nutrients become less available in the soil,the remobilization of nutrients in biomass tissues(plant internal cycling)helps sustain tree nutrition.Our study aims to quantify the impact of Removing Harvest Residues and Litter(RHRL)during five years on tree growth,wood density,and stem wood nutrient concentrations in young beech and oak forest stands.Result:Our study found that,RHRL significantly decreased tree growth ring width by 14%,and wood density by 3%,in beech trees,in near bark rings.RHRL also significantly reduced nutrient concentration in near bark and near pith areas of both studied species.Mg,Na and S were found lower by 44%,76%,and 56%,respectively,in near bark area of beech trees.In near bark area of oak trees,K,Ca,Mg,Na,S,and Fe were lower by 20%,25%,41%,48%,41%,and 16%,respectively.K and Mg concentrations decreased more strongly in near pith area compared to near bark area suggesting internal translocation of these two elements.Conclusion:In beech trees,wood density proved to be an important factor while quantifying the effect of removing harvest residuals on tree growth and biomass.Soil nutrient loss intensified the remobilization of nutrients con-tained in older tree rings(close to the pith)towards newly formed rings(close to bark).In our study,in beech trees,K was found to be the most recycled major nutrient.These results demonstrate the potential of such analysis for providing valuable insight into the effect of RHRL in premature stands on the physiological adaptive strategies of trees and an indication of soil fertility status.展开更多
In forest growing at any one site, the growth rate of an individual tree is determined principally by its size, which reflects its metabolic capacity, and by competition from neighboring trees. Competitive effects of ...In forest growing at any one site, the growth rate of an individual tree is determined principally by its size, which reflects its metabolic capacity, and by competition from neighboring trees. Competitive effects of a tree may be proportional to its size;such competition is termed ‘sym-metric’ and generally involves competition below ground for nutrients and water from the soil. Competition may also be ‘asymmetric’, where its effects are disproportionate to the size of the tree;this generally involves competition above ground for sunlight, when larger trees shade smaller, but the reverse cannot occur. This work examines three model systems often seen as exemplars relating individual tree growth rates to tree size and both competitive processes. Data of tree stem basal area growth rates in plots of even- aged, monoculture forest of blackbutt (Eucalyptus pilularis Smith) growing in sub-tropical eastern Australia were used to test these systems. It was found that none could distin-guish between size and competitive effects at any time in any one stand and, thus, allow quantification of the contribution of each to explaining tree growth rates. They were prevented from doing so both by collinearity between the terms used to describe each of the effects and technical problems involved in the use of nonlinear least-squares regression to fit the models to any one data set. It is concluded that quite new approaches need to be devised if the effects on tree growth of tree size and competitive processes are to be quantified and modelled successfully.展开更多
We evaluated the effects of planting densities (500, 1,000, 1,500 and 2,000 trees.ha-1) on tree growth performance (diameter at base, diameter at breast height, and clear bole height) of two clones (RRIM 2020 and...We evaluated the effects of planting densities (500, 1,000, 1,500 and 2,000 trees.ha-1) on tree growth performance (diameter at base, diameter at breast height, and clear bole height) of two clones (RRIM 2020 and PRIM 2025) of nine years old plantations of rubber tree (Hevea brasiliensis Muell. Arg) in Malaysia. For the four planting densities of the two clones, basal area and diameter at breast height declined with increasing planting density. Clear bole heights were greatest at 1,500 trees.haland lowest at 500 trees.ha-1 for the clone RRIM 2020, and at 2,000 trees.ha-1and 500 trees.halfor clone RRIM 2025. We conclude that the ideal planting density is 2,000 trees.ha"l for obtaining high volume of wood production and 500 trees-ha-1 for high wood quality.展开更多
Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialle...Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialled as an alternative to row planting. The mortality, growth, and quality of planted cherry trees were compared between the group and row planting. The influence of neighbourhood competition and light availability on growth and quality was studied. The group and row planting of cherry trees were established at a wind-thrown site in southwestern Germany in the year 2000. In group planting, five cherry seedlings and seven lime seedlings (Tilia cordata Mill.) were planted with a 1 x 1 m spacing. In total, 60 groups were planted per hectare with a 13 × 13 m spacing. In contrast, 3300 seedlings (2475 cherries and 825 limes) were planted per hectare in row planting with a 3 × 1 m spacing. Ten groups and plots (10 × 10 m) were randomly established in group and row planting stand, respectively. The survival rate, stability (height to diameter ratio), diameter, and height growth were significantly higher in group planting. In the group plantings,40.5% of cherry trees had straight stems and 13.5% had a monopodial crown compared with 15% with straight stems and 2% with a monopodial crown in row planting. The proportion of dominant cherry trees in canopy was 49% in groups compared with 22% in rows. The length of branch free bole was significantly higher in cherries planted in groups than those grown in rows. Intra- and interspecific competition reduced the growth and stability of cherry trees in row planting, but not in group planting. Light availability did not cause any significant effects on growth and quality between group and row planting. This first study on cherry group planting indicates that the survival rate, growth, and tree quality were higher in groups than in rows at this early development stage. The competition by naturally born seedlings was an important reason for the difference in performance between group and row planting. This study will encourage forest practitioners to establish more cherry group planting trials on multiple sites to test the effectiveness of this alternative technique as a tool of regeneration and restoration silviculture.展开更多
Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection...Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results: Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.展开更多
The artificial pure and mixed Korean pine (Pinus koraiensis) forests were investigated at Dailing Forestry Bureau in Xiaoxing'an mountains from 1990 to 1992. Depending on the distance between the samplings of Kore...The artificial pure and mixed Korean pine (Pinus koraiensis) forests were investigated at Dailing Forestry Bureau in Xiaoxing'an mountains from 1990 to 1992. Depending on the distance between the samplings of Korean pine and their neighbor trees, the neighbor tree height, the size of neighbor tree canopy, and dimension of neighbor tree. The forest structure was classified into three types: (1) prowth of a tree in the light (open), (2) Growth of a tree in the canopy gap (Gap), (3)Growth of a tree under broad-leaved tree canopy. The frequeney, height, and age of stem divergence of Korean pine tree were investigated by sampling trees. The temporal and spatial model of the tree growth was applied on basis of the height of stem divergence, ratio of height and DBH, and character of tree stem.The morphology and growth character of Korean pine trees during different development stage were forecasted.展开更多
Background: Growth and yield models are important tools for forest planning. Due to its geographic location, topology, and history of management, the forests of the Adirondacks Region of New York are unique and compl...Background: Growth and yield models are important tools for forest planning. Due to its geographic location, topology, and history of management, the forests of the Adirondacks Region of New York are unique and complex. However, only a relatively limited number of growth and yield models have been developed and/or can be reasonably extended to this region currently. Methods: in this analysis, 571 long-term continuous forest inventory plots with a total of 10 - 52 years of measurement data from four experimental forests maintained by the State University of New York College of Environmental Science and Forestry and one nonindustrial private forest were used to develop an individual tree growth model for the primary hardwood and softwood species in the region. Species-specific annualized static and dynamic equations were developed using the available data and the system was evaluated for long-term behavior. Results: Equivalence tests indicated that the Northeast Variant of the Forest Vegetation Simulator (FVS-NE) was biased in its estimation of tree total and bole height, diameter and height increment, and mortality for most species examined. In contrast, the developed static and annualized dynamic, species-specific equations performed quite well given the underlying variability in the data. Long-term model projections were consistent with the data and suggest a relatively robust system for prediction. Conclusions: Overall, the developed growth model showed reasonable behavior and is a significant improvement over existing models for the region. The model also highlighted the complexities of forest dynamics in the region and should help improve forest planning efforts there.展开更多
In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-redu...In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-reducing methods(deinterlacing,removing every other plant in each row,removing every other plant every other row)on the canopy microenvironment,tree structure,leaf photosynthesis and fruit quality were studied.The results showed that different density-reducing methods significantly reduced the orchard coverage and increased the crown transmittance.Among them,the deinterlacing treatment was the best in improving the population structure of the closed orchard,as it reduced the orchard coverage rate by 55.68 percentage points and the canopy transmittance by 82.38 percentage points,compared with the control(CK).Different density-reducing methods all could significantly reduce the branch amount in the closed orchard and optimized the branch composition.The three density-reducing methods decreased the number of branches per plant by 18.96%,12.41%and 19.58%,respectively,compared with the CK.And compared with the CK,the proportion of short branches and leafy branches to the total branches was increased by 17.13%,14.27%and 7.37%,respectively,and the proportion of long branches and developmental branches to the total branches was decreased by 24.47%,18.04%and 10.79%,respectively.The effects of the different density-reducing methods on the temperature,relative light intensity,SPAD and leaf photosynthetic rate in canopies all followed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing<removing every other plant in each row<removing every other plant every other row<CK.The average single fruit weight(238.3 g),coloring index(89.2),smoothness index(83.2),soluble solid content(15.1%)and high quality fruit rate(82.4%)of the deinterlacing treatment were higher than those of other treatments,and the values were 18.2%,11.4%,5.85%,26.9%and 25.2%higher than the CK,respectively.The use of dein ̄terlacing to reduce density is the best for improving the microenvironment of closed apple orchards and improving the photosynthetic efficiency and fruit quality.展开更多
Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro prol...Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.展开更多
Climate-driven changes in the thermal and moisture regimes may variously influence different tree species growth and ranges.We hypothesize that drought resistant Siberian larch(Larix sibirica Ledeb.)and precipitation-...Climate-driven changes in the thermal and moisture regimes may variously influence different tree species growth and ranges.We hypothesize that drought resistant Siberian larch(Larix sibirica Ledeb.)and precipitation-sensitive Siberian pine(Pinus sibirica Du Tour)responded differently to climate change along the elevational thermal and precipitation gradients.We studied the influence of air temperature,precipitation,soil moisture,and atmospheric drought(indicated by the drought index SPEI)on larch and pine growth along the southward megaslope of the West Sayan Ridge.We found that since 2000 climate change resulted in increasing larch and pine radial growth index(GI)(c.1.5–3times)within treeline(2000–2300 m)and timberline(1900–2000 m)ecotones,i.e.within high precipitation zones.Within the forest-steppe ecotone(1100–1200 m)in which L.sibirica is the only species,larch GI stagnated or even decreased.The total forested area increased since 2000 up to+50%in the high elevations,whereas in the low elevations(<1400 m)area changes were negligible.Within treeline and timberline,trees’GI was stimulated by summer temperature.Meanwhile,temperature increase in early spring reduces GI due to living tissue activation followed by tissue damage by desiccation.Within forest-steppe,larch radial growth was mostly dependent on soil moisture.Warming shifted dependence on moisture to the early dates of the growing period.Acute droughts decreased GI within forest-steppe as well as within treeline,whereas the drought influence on both species within highlands was insignificant.Within forest-steppe seedlings establishment was poor,whereas it was successful within treeline and timberline.Current climate change leads to stagnation or even decrease in Larix sibirica growth in the southern lowland habitat.In combination with poor seedlings establishment,reduced growth threatens the transformation of open lowland forests into forest-steppe and steppe communities.Meanwhile,in the highlands warming facilitated the growth of Siberian larch and pine and the increase of forested area.展开更多
There are two well-known types of tree pruning, crown raising and crown reduction. In Japan, the former has been rarely used, whereas the latter has been widely used. However, it remains unclear which type is more eff...There are two well-known types of tree pruning, crown raising and crown reduction. In Japan, the former has been rarely used, whereas the latter has been widely used. However, it remains unclear which type is more effective to maintain tree vigor and health. Bamboo-leaf oak (Quercus myrsinifolia) trees were experimentally planted and pruned with the two pruning types compared with the no-pruning type. In the crown raising, the lower part of each tree was pruned, and its dominant leader was maintained from the aspect of structural pruning, whereas in the crown reduction, the upper part of each tree was pruned, and the tree height was reduced. The oak trees were observed and recorded in terms of leaf area, leaf weight, branch weight, and tree shape for about one year. The morphological data were statistically analyzed in terms of their allometric relationships. The crown raising type shared the same allometric patterns with the no-pruning types, but the crown reduction type did not. The trees of the crown reduction type were more likely to suffer from pests and disease. The allometric differences between the two pruning types may be considered the result of a decline in whole-tree vigor and health in crown reduction. The crown raising seemed more likely to control tree vigor and health than the crown reduction. The present results would help arborists determine which method to use for pruning.展开更多
Nonstructural carbohydrates(NSC)are indicators of tree carbon balance and play an important role in regulating plant growth and survival.However,our understanding of the mechanism underlying drought-induced response o...Nonstructural carbohydrates(NSC)are indicators of tree carbon balance and play an important role in regulating plant growth and survival.However,our understanding of the mechanism underlying drought-induced response of NSC reserves remains limited.Here,we conducted a long-term throughfall exclusion(TFE)experiment to investigate the seasonal responses of NSC reserves to manipulative drought in two contrasting tree species(a broadleaved tree Castanopsis hystrix Miq.and a coniferous tree Pinus massoniana Lamb.)of the subtropical China.We found that in the dry season,the two tree species differed in their responses of NSC reserves to TFE at either the whole-tree level or by organs,with significantly depleted total NSC reserves in roots in both species.Under the TFE treatment,there were significant increases in the NSC pools of leaves and branches in C.hystrix,which were accompanied by significant decreases in fine root biomass and radial growth without significant changes in canopy photosynthesis;while P.massoniana exhibited significant increase in fine root biomass without significant changes in radial growth.Our results suggested that under prolonged water limitation,NSC usage for growth in C.hystrix is somewhat impaired,such that the TFE treatment resulted in NSC accumulation in aboveground organs(leaf and branch);whereas P.massoniana is capable of efficiently utilizing NSC reserves to maintain its growth under drought conditions.Our findings revealed divergent NSC allocations under experimental drought between the two contrasting tree species,which are important for better understanding the differential impacts of climate change on varying forest trees and plantation types in subtropical China.展开更多
Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation ha...Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation has been suggested to be a fundamental mechanism underlying the positive biodiversity-productivity relationships.Empirical evidence,however,is rare about the impact of local neighbourhood diversity on tree characteristics analysed at a very high level of detail.To address this issue we analysed these effects on the individual-tree crown architecture and tree productivity in a mature mixed forest in northern Germany.Methods:Our analysis considers multiple target tree species across a local neighbourhood species richness gradient ranging from 1 to 4.We applied terrestrial laser scanning to quantify a large number of individual mature trees(N=920)at very high accuracy.We evaluated two different neighbour inclusion approaches by analysing both a fixed radius selection procedure and a selection based on overlapping crowns.Results and conclusions:We show that local neighbourhood species diversity significantly increases crown dimension and wood volume of target trees.Moreover,we found a size-dependency of diversity effects on tree productivity(basal area and wood volume increment)with positive effects for large-sized trees(diameter at breast height(DBH)>40 cm)and negative effects for small-sized(DBH<40 cm)trees.In our analysis,the neighbour inclusion approach has a significant impact on the outcome.For scientific studies and the validation of growth models we recommend a neighbour selection by overlapping crowns,because this seems to be the relevant scale at which local neighbourhood interactions occur.Because local neighbourhood diversity promotes individual-tree productivity in mature European mixed-species forests,we conclude that a small-scale species mixture should be considered in management plans.展开更多
[Objectives]To investigate the effects of 15 distinct citrus rootstock-scion combinations on tree growth,fruit quality,and photosynthetic characteristics under red loam soil conditions and provide a theoretical founda...[Objectives]To investigate the effects of 15 distinct citrus rootstock-scion combinations on tree growth,fruit quality,and photosynthetic characteristics under red loam soil conditions and provide a theoretical foundation for the selection of appropriate citrus rootstock-scion combinations in the Zhaoqing region.[Methods]A total of 15 citrus rootstock-scion combinations were utilized as test materials for a comprehensive analysis of their phenological periods(budding,flowering,and fruiting),tree growth indicators(tree height,crown diameter,and growth),and fruit quality(appearance quality and intrinsic quality).The photosynthetic characteristics of the test materials,including the net photosynthetic rate(Pn),transpiration rate(Tr),water use efficiency(WUE),apparent quantum yield(AQY),and carboxylation efficiency(CE),were analyzed to determine their significance.Additionally,the leaf photosynthetic physiological indicators,such as soluble protein,specific leaf weight,chlorophyll,and carotenoids,were evaluated.[Results]There were notable differences observed in the phenological period,growth potential of trees,fruit quality,and photosynthetic characteristics among various citrus rootstock-scion combinations.The phenological periods exhibited variation contingent on the grafting varieties.In terms of tree growth potential,the Citrus tangerina Tanaka‘Hongju’and C.haniana Hort.‘Suanju’rootstocks demonstrated greater tree height,crown growth,and overall tree strength;however,they were also prone to excessive growth.Conversely,the C.limonia Osbeck‘Hongningmeng’and C.sinensis×P.trifoliata‘Zhicheng’rootstocks displayed medium growth potential,while the Poncirus trifoliate(L)Raf.‘Zhike’rootstock resulted in shorter trees.In terms of fruit quality,the single fruit weight of C.flamea Hort.‘Shatangju’ranged from 33 to 50 g,exhibiting a flat and round shape.The total soluble solids and titratable acid content of‘Shatangju’grafted onto the‘Zhike’rootstock were notably high.In contrast,the single fruit weight of C.haniana Hort.‘Chuntianju’varied between 65 and 81 g,characterized by a high flat round shape.The‘Suanju’rootstock demonstrated a higher sugar and acid content compared to other rootstocks.Additionally,the single fruit weight of C.nobilis Lour.‘Gonggan’ranged from 62 to 145 g,with the fruit shape being either round or oval.The soluble sugar and total soluble solids content associated with the‘Zhike’rootstock was also elevated.In relation to photosynthetic characteristics,the photosynthetic performance of the‘Shatangju’variety was superior when grafted onto the‘Zhike’and‘Hongju’rootstocks.Similarly,the‘Chuntianju’variety exhibited enhanced photosynthetic performance on the‘Zhike’,‘Zhicheng’,and‘Hongju’rootstocks.Furthermore,the‘Gonggan’variety demonstrated improved photosynthetic performance when grafted onto the‘Zhike’and‘Suanju’rootstocks.[Conclusions]Based on the characteristics of the red loam soil in the Zhaoqing region,the rootstocks‘Zhike’and‘Hongju’are conducive to the cultivation of the‘Shatangju’variety.Additionally,the rootstocks‘Zhike’,‘Zhicheng’,and‘Hongju’are optimal for the growth of the‘Chuntianju’variety,while the rootstocks‘Zhike’and‘Suanju’are appropriate for the growth of the‘Gonggan’variety.展开更多
基金This study was supported by the National Natural Science Foundation of China(42277448,41971104 and 41807431)the National Science Foundation of Shaanxi Province(2019JQ-325)the Fundamental Research Funds for the Central Universities(GK201903068 and GK202206032).
文摘Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lying the impact of drought on tree growth remains unre-solved.In this study,earlywood and latewood tree-ring growth,δ^(13)C,andδ^(18)O chronologies of Picea mongolica from 1900 to 2013 were developed to clarify the intra-and inter-annual tree-ring growth responses to increasingly fre-quent droughts.The results indicate that annual basal area increment residuals(BAI_(res)),which removed tree age and size effects,have significantly decreased since 1960.How-ever,the decreasing trend of earlywood BAI_(res) was higher than that of latewood.Climate response analysis suggests that the dominant parameters for earlywood and latewood proxies(BAI_(res),δ^(13)C andδ^(18)O)were drought-related climate variables(Palmer drought severity index,temperature,rela-tive humidity,and vapor pressure deficit).The most signifi-cant period of earlywood and latewood proxies’responses to climate variables were focused on June-July and July-August,respectively.BAI_(res),andδ^(13)C were significantly affected by temperature and moisture conditions,whereasδ^(18)O was slightly affected.Decreasing stomatal conduct-ance due to drought outweighed the influence of increasing CO_(2) on intrinsic water use efficiency(iWUE),and ultimately led to a decline in BAI_(res).Compared to latewood,the faster decreasing BAI_(res) and smaller increasing iWUE of early-wood suggested trees were more vulnerable to water stress in the early growing season.Our study provides insights into the inter-and intra-annual mechanisms of tree-ring growth in semi-arid regions under rising CO_(2) and climate change.
文摘The effect of pruning severity on tree growth was analyzed by change point detection using segmented regression. The present study applied this analysis to a well-known published data set including diameter growth response, tree age, pruning severity and pretreatment crown size. First, multiple regression analysis was performed to assess the effect of tree age, pruning severity and pretreatment crown size on diameter growth response. Next, segmented regression analysis was performed to assess the effect of pruning severity on diameter growth response. The results of the multiple regression showed that diameter growth response was significantly influenced by pruning severity and pretreatment crown size. The results of the segmented regression showed that in the whole data set, an abrupt change toward a decrease in diameter growth response was detected at 25% of the live crown removed. However, in the group of fully crowned and open-grown, diameter growth response continuously decreased with increasing pruning severity with no significant abrupt change, whereas in the group of 70% - 90% live crown, diameter growth response did not significantly decrease up to the break point (53% crown removed) and then abruptly decreased. This may be the first study to show the numerical evaluation of the effect of pruning severity on tree growth by change point analysis.
文摘The impact of lag effects produced by disturbances on primary production has been a major concern among ecologists during the last decade.Sudden and extreme climatic events are imposing drastic reductions in radial growth of trees as evidenced in tree-rings series Dendrochronological samples are obtained at tree level but analyzed at an aggregated scale(i.e.,mean chronologies),although aggregating tree-ring chronology on a regional scale may reduce the possibility of studying the variability of individual tree response to drought,by amplifying the average population response.Here,we conducted experimental research in which 370 trees of 5 species were analyzed to assess the potential statistical and scaling issues that may occur when using regressionbased methods to analyze ecosystem responses to disturbances.Drought legacy effects were quantified using individual and aggregated scales.Then,lag effects were validated using confidence and prediction intervals to identify values falling outside the certainty of the climate-growth model Individual scale legacy effects contrasted with confidence intervals were commonly distributed across species but were scarce when compared with prediction intervals.The analysis of aggregated scale legacies detected significant growth reductions when validated using prediction intervals;however,individual scale legacy lag effects were not detected.This finding directly contrasts the results obtained when using an aggregated scale.Our results provide empirical evidence on how aggregating ecological data to infer processes that emerge from an individual scale can lead to distorted conclusions.We therefore encourage the use of individual based statistical and ecological procedures to analyze tree rings as a means of further understanding the ecosystem responses to disturbances.
基金Project supported by the National Natural Science Foundation of China (No. 39370563)by the NationalKey Basic Research Suppor
文摘Vector analysis technique and ecological sequential comparison methods were adopted to study tree growth response to the micronutrients, B, Mo, Cu, Zn, Fe, and Mn, in soils derived from various parent materials in the forest area of Taihu Lake region in southeast China. The results showed that the dry weight of individual current-year needle of Chinese fir (Cunninghamia lanceolata) grown on the soi1 derived from granite parent rock was increased by 8% and 13% in comparison with that grown on the soils derived from sandstone and ash-tuff parent rock, respectively. And such dry weight of loblolly pine (Pinus taeda) grown on the soil derived from sandstone parent rock was increased by 21% in comparison with that on the soil derived from ash-tuff parent rock. One of the reasons for those results was that micronutrients content in the soil derived from ash-tuff parent rock were not sufficient to meet the requirement of the growth of Chinese fir and loblolly pine, i.e., micronutrients in soil were deficient and/or induced deficient. The amounts of Cu, Zn, Fe, and Mn uptake by Chinese fir and loblolly pine were in agreement with the contents of available micronutrients in soil respectively, except for B and Mo. Meanwhile, there might exist an "antagonism" between the uptake of B versus Mo by trees, although more studies are needed to confirm it. Regression analysis indicated that amount of a soil available micronutrient was correlated to the type of parent material and its total amount in the forest floor, except for B. The F test identified that the correlation of each equation reached the significant level to different extents, respectively. The t test confirmed that amount of available forms was mainly depended on the type of parent material for Mo, Cu, Zn and Mn but on the forest floor for Fe. There was a feedback effect of forest stand on the amount of soil available micronutrients. The ability of accumulating available micronutrients in soil was better by the sawtooth oak (Quercus acutissima) stand than by the Chinese fir stand (except for B). The ability of accumulating available Zn, Fe, Mn and Mo in soil was better by the Chinese fir stand than by the loblolly pine stand, while as for available B and Cu, by the latter was better than by the former. When discussing the effect of forest stand on the amount of soil available micronutrients, not only the amount of micronutrient in the forest floor and the parent materials but also the amount of micronutrient taken up by current-year needles have to be considered.
文摘Plantations of tropical species axe becoming an increasingly important source of wood. However, it is important that research trials focus not only on tree growth performance, but also on wood quality. The aims of this study were to assess the growth performance of six commercially and ecologically important tree species from separate plantation trials in Indonesia and to determine the relationships between tree growth and wood quality in terms of the dynamic modulus of elasticity (MOE) and wood density. Forty-eight 7-year Maesopsis eminii Engl. and thirty-five 9-year specimens (7 each of 5 Shorea spp.) were selected from two trials. The MOE, based on acoustic velocity, was indirectly measured to evaluate wood stiffness. Tree-growth performance was evaluated, and correlations between growth traits and acoustic velocity as well as density and wood stiffness properties were estimated. The growth performance of M. eminii in terms of tree volume was significantly different in three different cate- gories of growth (i.e. fast, medium, slow). Of the five Shorea spp. studied, Shorea leprosula Miq. had the highest growth rate, as expected since it is known to be a fastgrowing Shorea species. Indirect measurement of wood quality by means of non-destructive ultrasonic methods showed a weak negative correlation between tree volume and acoustic velocity and dynamic MOE. Although each fast-growing tree could reach a merchantable size faster than other varieties or species, wood traits of various species tested were not significantly different based on tree growth rate performance. The findings from this study could be used to improve selection criteria in future breeding trials; indirect measurements of the dynamic modulus of elasticity can be used in mass pre-selection of genetic materials, to choose the most-promising material for in-depth evaluation.
基金supported by the National Natural Science Foundation of China(No.31570583)the Lecture and Study Program for Outstanding Scholars from Home and Abroad(No.CAFYBB2011007)
文摘The origin of a seed strongly impacts its traits, and both origin and seed traits influence seed germination and seedling development. However, in many instances, this effect on the seedling does not persist into adulthood, and little is known about how seed traits and original environment affect seedling/tree growth over time. In this study, seed size, seed mass, seedling/tree growth and origins were collected and determined for 23 provenances of Quercus acutissima from across China. Origin variables correlated well with seed size and seed mass. In stepwise multiple regressions, a longitudinal aridity index explained 49.2-68.7% of the total variation in seed size and mass, while only seed width was correlated with seedling/tree height (H) and diameter at the ground (D) from seed traits and origins. The total variance in H and D explained by the models decreased over time, for example, the R <sup>2</sup> value of the models for H declined from 0.477 in the first year to 0.224 in the fourth year; no models was significant in the fifth year. These results indicate that seed size, regulated by the longitudinal aridity index strongly impacted seedling and tree growth, but the strength of the influence decreased over time, and disappeared after 4 years.
基金This work was supported within the XyloDensMap project,INRAE funded by the French Ministry of Agriculture under the convention n°A6.01/2017.
文摘Background:Higher exportation of harvest residues from forests due to increased demand for woody biomass,has reportedly diminished soil mineral resources and may lead to degraded tree nutrition as well as growth.However,as nutrients become less available in the soil,the remobilization of nutrients in biomass tissues(plant internal cycling)helps sustain tree nutrition.Our study aims to quantify the impact of Removing Harvest Residues and Litter(RHRL)during five years on tree growth,wood density,and stem wood nutrient concentrations in young beech and oak forest stands.Result:Our study found that,RHRL significantly decreased tree growth ring width by 14%,and wood density by 3%,in beech trees,in near bark rings.RHRL also significantly reduced nutrient concentration in near bark and near pith areas of both studied species.Mg,Na and S were found lower by 44%,76%,and 56%,respectively,in near bark area of beech trees.In near bark area of oak trees,K,Ca,Mg,Na,S,and Fe were lower by 20%,25%,41%,48%,41%,and 16%,respectively.K and Mg concentrations decreased more strongly in near pith area compared to near bark area suggesting internal translocation of these two elements.Conclusion:In beech trees,wood density proved to be an important factor while quantifying the effect of removing harvest residuals on tree growth and biomass.Soil nutrient loss intensified the remobilization of nutrients con-tained in older tree rings(close to the pith)towards newly formed rings(close to bark).In our study,in beech trees,K was found to be the most recycled major nutrient.These results demonstrate the potential of such analysis for providing valuable insight into the effect of RHRL in premature stands on the physiological adaptive strategies of trees and an indication of soil fertility status.
文摘In forest growing at any one site, the growth rate of an individual tree is determined principally by its size, which reflects its metabolic capacity, and by competition from neighboring trees. Competitive effects of a tree may be proportional to its size;such competition is termed ‘sym-metric’ and generally involves competition below ground for nutrients and water from the soil. Competition may also be ‘asymmetric’, where its effects are disproportionate to the size of the tree;this generally involves competition above ground for sunlight, when larger trees shade smaller, but the reverse cannot occur. This work examines three model systems often seen as exemplars relating individual tree growth rates to tree size and both competitive processes. Data of tree stem basal area growth rates in plots of even- aged, monoculture forest of blackbutt (Eucalyptus pilularis Smith) growing in sub-tropical eastern Australia were used to test these systems. It was found that none could distin-guish between size and competitive effects at any time in any one stand and, thus, allow quantification of the contribution of each to explaining tree growth rates. They were prevented from doing so both by collinearity between the terms used to describe each of the effects and technical problems involved in the use of nonlinear least-squares regression to fit the models to any one data set. It is concluded that quite new approaches need to be devised if the effects on tree growth of tree size and competitive processes are to be quantified and modelled successfully.
文摘We evaluated the effects of planting densities (500, 1,000, 1,500 and 2,000 trees.ha-1) on tree growth performance (diameter at base, diameter at breast height, and clear bole height) of two clones (RRIM 2020 and PRIM 2025) of nine years old plantations of rubber tree (Hevea brasiliensis Muell. Arg) in Malaysia. For the four planting densities of the two clones, basal area and diameter at breast height declined with increasing planting density. Clear bole heights were greatest at 1,500 trees.haland lowest at 500 trees.ha-1 for the clone RRIM 2020, and at 2,000 trees.ha-1and 500 trees.halfor clone RRIM 2025. We conclude that the ideal planting density is 2,000 trees.ha"l for obtaining high volume of wood production and 500 trees-ha-1 for high wood quality.
基金financially supported by a research grant from the German Agency for Renewable Resources(Fachagentur Nachwachsende Rohstoffe e.V or FNR,Grant Number:22008813)
文摘Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialled as an alternative to row planting. The mortality, growth, and quality of planted cherry trees were compared between the group and row planting. The influence of neighbourhood competition and light availability on growth and quality was studied. The group and row planting of cherry trees were established at a wind-thrown site in southwestern Germany in the year 2000. In group planting, five cherry seedlings and seven lime seedlings (Tilia cordata Mill.) were planted with a 1 x 1 m spacing. In total, 60 groups were planted per hectare with a 13 × 13 m spacing. In contrast, 3300 seedlings (2475 cherries and 825 limes) were planted per hectare in row planting with a 3 × 1 m spacing. Ten groups and plots (10 × 10 m) were randomly established in group and row planting stand, respectively. The survival rate, stability (height to diameter ratio), diameter, and height growth were significantly higher in group planting. In the group plantings,40.5% of cherry trees had straight stems and 13.5% had a monopodial crown compared with 15% with straight stems and 2% with a monopodial crown in row planting. The proportion of dominant cherry trees in canopy was 49% in groups compared with 22% in rows. The length of branch free bole was significantly higher in cherries planted in groups than those grown in rows. Intra- and interspecific competition reduced the growth and stability of cherry trees in row planting, but not in group planting. Light availability did not cause any significant effects on growth and quality between group and row planting. This first study on cherry group planting indicates that the survival rate, growth, and tree quality were higher in groups than in rows at this early development stage. The competition by naturally born seedlings was an important reason for the difference in performance between group and row planting. This study will encourage forest practitioners to establish more cherry group planting trials on multiple sites to test the effectiveness of this alternative technique as a tool of regeneration and restoration silviculture.
文摘Background: A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods: The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results: Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions: The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.
文摘The artificial pure and mixed Korean pine (Pinus koraiensis) forests were investigated at Dailing Forestry Bureau in Xiaoxing'an mountains from 1990 to 1992. Depending on the distance between the samplings of Korean pine and their neighbor trees, the neighbor tree height, the size of neighbor tree canopy, and dimension of neighbor tree. The forest structure was classified into three types: (1) prowth of a tree in the light (open), (2) Growth of a tree in the canopy gap (Gap), (3)Growth of a tree under broad-leaved tree canopy. The frequeney, height, and age of stem divergence of Korean pine tree were investigated by sampling trees. The temporal and spatial model of the tree growth was applied on basis of the height of stem divergence, ratio of height and DBH, and character of tree stem.The morphology and growth character of Korean pine trees during different development stage were forecasted.
文摘Background: Growth and yield models are important tools for forest planning. Due to its geographic location, topology, and history of management, the forests of the Adirondacks Region of New York are unique and complex. However, only a relatively limited number of growth and yield models have been developed and/or can be reasonably extended to this region currently. Methods: in this analysis, 571 long-term continuous forest inventory plots with a total of 10 - 52 years of measurement data from four experimental forests maintained by the State University of New York College of Environmental Science and Forestry and one nonindustrial private forest were used to develop an individual tree growth model for the primary hardwood and softwood species in the region. Species-specific annualized static and dynamic equations were developed using the available data and the system was evaluated for long-term behavior. Results: Equivalence tests indicated that the Northeast Variant of the Forest Vegetation Simulator (FVS-NE) was biased in its estimation of tree total and bole height, diameter and height increment, and mortality for most species examined. In contrast, the developed static and annualized dynamic, species-specific equations performed quite well given the underlying variability in the data. Long-term model projections were consistent with the data and suggest a relatively robust system for prediction. Conclusions: Overall, the developed growth model showed reasonable behavior and is a significant improvement over existing models for the region. The model also highlighted the complexities of forest dynamics in the region and should help improve forest planning efforts there.
基金Supported by Key Research and Development Program of Shandong Province(2017CXGC0210)Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2017D01)+3 种基金National Key R&D Program of China(2016YFD0201100)National Natural Science Foundation of China(31600021)Modern Agricultural Industry Technology System of China for Apple(CARS-27)Dongying Science and Technology Program(2015GG0104)
文摘In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-reducing methods(deinterlacing,removing every other plant in each row,removing every other plant every other row)on the canopy microenvironment,tree structure,leaf photosynthesis and fruit quality were studied.The results showed that different density-reducing methods significantly reduced the orchard coverage and increased the crown transmittance.Among them,the deinterlacing treatment was the best in improving the population structure of the closed orchard,as it reduced the orchard coverage rate by 55.68 percentage points and the canopy transmittance by 82.38 percentage points,compared with the control(CK).Different density-reducing methods all could significantly reduce the branch amount in the closed orchard and optimized the branch composition.The three density-reducing methods decreased the number of branches per plant by 18.96%,12.41%and 19.58%,respectively,compared with the CK.And compared with the CK,the proportion of short branches and leafy branches to the total branches was increased by 17.13%,14.27%and 7.37%,respectively,and the proportion of long branches and developmental branches to the total branches was decreased by 24.47%,18.04%and 10.79%,respectively.The effects of the different density-reducing methods on the temperature,relative light intensity,SPAD and leaf photosynthetic rate in canopies all followed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing<removing every other plant in each row<removing every other plant every other row<CK.The average single fruit weight(238.3 g),coloring index(89.2),smoothness index(83.2),soluble solid content(15.1%)and high quality fruit rate(82.4%)of the deinterlacing treatment were higher than those of other treatments,and the values were 18.2%,11.4%,5.85%,26.9%and 25.2%higher than the CK,respectively.The use of dein ̄terlacing to reduce density is the best for improving the microenvironment of closed apple orchards and improving the photosynthetic efficiency and fruit quality.
基金supported by a grant from the National Key Technology Research and Development Program of the Ministry of Science and Technology of China,No.2014BAI01B00
文摘Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.
基金The Tomsk State University Development Program《Priority-2030》supported this study。
文摘Climate-driven changes in the thermal and moisture regimes may variously influence different tree species growth and ranges.We hypothesize that drought resistant Siberian larch(Larix sibirica Ledeb.)and precipitation-sensitive Siberian pine(Pinus sibirica Du Tour)responded differently to climate change along the elevational thermal and precipitation gradients.We studied the influence of air temperature,precipitation,soil moisture,and atmospheric drought(indicated by the drought index SPEI)on larch and pine growth along the southward megaslope of the West Sayan Ridge.We found that since 2000 climate change resulted in increasing larch and pine radial growth index(GI)(c.1.5–3times)within treeline(2000–2300 m)and timberline(1900–2000 m)ecotones,i.e.within high precipitation zones.Within the forest-steppe ecotone(1100–1200 m)in which L.sibirica is the only species,larch GI stagnated or even decreased.The total forested area increased since 2000 up to+50%in the high elevations,whereas in the low elevations(<1400 m)area changes were negligible.Within treeline and timberline,trees’GI was stimulated by summer temperature.Meanwhile,temperature increase in early spring reduces GI due to living tissue activation followed by tissue damage by desiccation.Within forest-steppe,larch radial growth was mostly dependent on soil moisture.Warming shifted dependence on moisture to the early dates of the growing period.Acute droughts decreased GI within forest-steppe as well as within treeline,whereas the drought influence on both species within highlands was insignificant.Within forest-steppe seedlings establishment was poor,whereas it was successful within treeline and timberline.Current climate change leads to stagnation or even decrease in Larix sibirica growth in the southern lowland habitat.In combination with poor seedlings establishment,reduced growth threatens the transformation of open lowland forests into forest-steppe and steppe communities.Meanwhile,in the highlands warming facilitated the growth of Siberian larch and pine and the increase of forested area.
文摘There are two well-known types of tree pruning, crown raising and crown reduction. In Japan, the former has been rarely used, whereas the latter has been widely used. However, it remains unclear which type is more effective to maintain tree vigor and health. Bamboo-leaf oak (Quercus myrsinifolia) trees were experimentally planted and pruned with the two pruning types compared with the no-pruning type. In the crown raising, the lower part of each tree was pruned, and its dominant leader was maintained from the aspect of structural pruning, whereas in the crown reduction, the upper part of each tree was pruned, and the tree height was reduced. The oak trees were observed and recorded in terms of leaf area, leaf weight, branch weight, and tree shape for about one year. The morphological data were statistically analyzed in terms of their allometric relationships. The crown raising type shared the same allometric patterns with the no-pruning types, but the crown reduction type did not. The trees of the crown reduction type were more likely to suffer from pests and disease. The allometric differences between the two pruning types may be considered the result of a decline in whole-tree vigor and health in crown reduction. The crown raising seemed more likely to control tree vigor and health than the crown reduction. The present results would help arborists determine which method to use for pruning.
基金This study was jointly supported by the National Natural Science Foundation of China(Grant No.31930078)the Ministry of Science and Technology of China for Key R&D Program(Grant No.2021YFD2200405).
文摘Nonstructural carbohydrates(NSC)are indicators of tree carbon balance and play an important role in regulating plant growth and survival.However,our understanding of the mechanism underlying drought-induced response of NSC reserves remains limited.Here,we conducted a long-term throughfall exclusion(TFE)experiment to investigate the seasonal responses of NSC reserves to manipulative drought in two contrasting tree species(a broadleaved tree Castanopsis hystrix Miq.and a coniferous tree Pinus massoniana Lamb.)of the subtropical China.We found that in the dry season,the two tree species differed in their responses of NSC reserves to TFE at either the whole-tree level or by organs,with significantly depleted total NSC reserves in roots in both species.Under the TFE treatment,there were significant increases in the NSC pools of leaves and branches in C.hystrix,which were accompanied by significant decreases in fine root biomass and radial growth without significant changes in canopy photosynthesis;while P.massoniana exhibited significant increase in fine root biomass without significant changes in radial growth.Our results suggested that under prolonged water limitation,NSC usage for growth in C.hystrix is somewhat impaired,such that the TFE treatment resulted in NSC accumulation in aboveground organs(leaf and branch);whereas P.massoniana is capable of efficiently utilizing NSC reserves to maintain its growth under drought conditions.Our findings revealed divergent NSC allocations under experimental drought between the two contrasting tree species,which are important for better understanding the differential impacts of climate change on varying forest trees and plantation types in subtropical China.
基金LG was funded by the German Research Foundation(DFG 320926971)through the project“Analysis of diversity effects on above-groundproductivity in forests:advancing the mechanistic understanding of spatiotemporal dynamics in canopy space filling using mobile laser scanning”。
文摘Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation has been suggested to be a fundamental mechanism underlying the positive biodiversity-productivity relationships.Empirical evidence,however,is rare about the impact of local neighbourhood diversity on tree characteristics analysed at a very high level of detail.To address this issue we analysed these effects on the individual-tree crown architecture and tree productivity in a mature mixed forest in northern Germany.Methods:Our analysis considers multiple target tree species across a local neighbourhood species richness gradient ranging from 1 to 4.We applied terrestrial laser scanning to quantify a large number of individual mature trees(N=920)at very high accuracy.We evaluated two different neighbour inclusion approaches by analysing both a fixed radius selection procedure and a selection based on overlapping crowns.Results and conclusions:We show that local neighbourhood species diversity significantly increases crown dimension and wood volume of target trees.Moreover,we found a size-dependency of diversity effects on tree productivity(basal area and wood volume increment)with positive effects for large-sized trees(diameter at breast height(DBH)>40 cm)and negative effects for small-sized(DBH<40 cm)trees.In our analysis,the neighbour inclusion approach has a significant impact on the outcome.For scientific studies and the validation of growth models we recommend a neighbour selection by overlapping crowns,because this seems to be the relevant scale at which local neighbourhood interactions occur.Because local neighbourhood diversity promotes individual-tree productivity in mature European mixed-species forests,we conclude that a small-scale species mixture should be considered in management plans.
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-26)Project of High-quality Development in Hundred Counties,Thousands Towns and Ten Thousand Villages.
文摘[Objectives]To investigate the effects of 15 distinct citrus rootstock-scion combinations on tree growth,fruit quality,and photosynthetic characteristics under red loam soil conditions and provide a theoretical foundation for the selection of appropriate citrus rootstock-scion combinations in the Zhaoqing region.[Methods]A total of 15 citrus rootstock-scion combinations were utilized as test materials for a comprehensive analysis of their phenological periods(budding,flowering,and fruiting),tree growth indicators(tree height,crown diameter,and growth),and fruit quality(appearance quality and intrinsic quality).The photosynthetic characteristics of the test materials,including the net photosynthetic rate(Pn),transpiration rate(Tr),water use efficiency(WUE),apparent quantum yield(AQY),and carboxylation efficiency(CE),were analyzed to determine their significance.Additionally,the leaf photosynthetic physiological indicators,such as soluble protein,specific leaf weight,chlorophyll,and carotenoids,were evaluated.[Results]There were notable differences observed in the phenological period,growth potential of trees,fruit quality,and photosynthetic characteristics among various citrus rootstock-scion combinations.The phenological periods exhibited variation contingent on the grafting varieties.In terms of tree growth potential,the Citrus tangerina Tanaka‘Hongju’and C.haniana Hort.‘Suanju’rootstocks demonstrated greater tree height,crown growth,and overall tree strength;however,they were also prone to excessive growth.Conversely,the C.limonia Osbeck‘Hongningmeng’and C.sinensis×P.trifoliata‘Zhicheng’rootstocks displayed medium growth potential,while the Poncirus trifoliate(L)Raf.‘Zhike’rootstock resulted in shorter trees.In terms of fruit quality,the single fruit weight of C.flamea Hort.‘Shatangju’ranged from 33 to 50 g,exhibiting a flat and round shape.The total soluble solids and titratable acid content of‘Shatangju’grafted onto the‘Zhike’rootstock were notably high.In contrast,the single fruit weight of C.haniana Hort.‘Chuntianju’varied between 65 and 81 g,characterized by a high flat round shape.The‘Suanju’rootstock demonstrated a higher sugar and acid content compared to other rootstocks.Additionally,the single fruit weight of C.nobilis Lour.‘Gonggan’ranged from 62 to 145 g,with the fruit shape being either round or oval.The soluble sugar and total soluble solids content associated with the‘Zhike’rootstock was also elevated.In relation to photosynthetic characteristics,the photosynthetic performance of the‘Shatangju’variety was superior when grafted onto the‘Zhike’and‘Hongju’rootstocks.Similarly,the‘Chuntianju’variety exhibited enhanced photosynthetic performance on the‘Zhike’,‘Zhicheng’,and‘Hongju’rootstocks.Furthermore,the‘Gonggan’variety demonstrated improved photosynthetic performance when grafted onto the‘Zhike’and‘Suanju’rootstocks.[Conclusions]Based on the characteristics of the red loam soil in the Zhaoqing region,the rootstocks‘Zhike’and‘Hongju’are conducive to the cultivation of the‘Shatangju’variety.Additionally,the rootstocks‘Zhike’,‘Zhicheng’,and‘Hongju’are optimal for the growth of the‘Chuntianju’variety,while the rootstocks‘Zhike’and‘Suanju’are appropriate for the growth of the‘Gonggan’variety.