The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage syst...The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.展开更多
Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and obser...Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broadqeaved forest; 50.61 t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. This is the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.展开更多
Powerful alluvial rivers in the northern Alborz mountain ranges erode river banks due to having high slopes.Most of these rivers flow in forest areas.In this research,the rate of the river bank erosion was examined us...Powerful alluvial rivers in the northern Alborz mountain ranges erode river banks due to having high slopes.Most of these rivers flow in forest areas.In this research,the rate of the river bank erosion was examined using the exposed roots of the trees.For this purpose,8 reaches of Lavij Stream were investigated.To determine the first year of root exposure,two sets of macroscopic and microscopic indicators were utilized.Accordingly,the rate of the stream bank erosion was estimated.The results were analyzed by using statistical test,which showed insignificant differences between the two groups of indicators.Due to its more abundance(frequency)on the margins and easy detection of its root through the exposure(macroscopic and microscopic)indicators,Alnus glutinosa(black alder)species could be more easily and accurately analyzed as compared with any other tree species in the region.The mean erosion rate of the riverbank using the extruded roots was estimated to be 0.08 m/yr.The hydrological analyses of flood flows showed that 95%of Lavij Stream bank erosion was caused by the river bank full discharges with a return period of 1-3 years.展开更多
As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a nume...As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a numerical example is demonstrated.展开更多
Descriptions of tree root morphology inform design of belowground biomass and carbon inventories and sampling for research. We studied root morphology of tanoak (Notholithocarpus densiflorus), an important component i...Descriptions of tree root morphology inform design of belowground biomass and carbon inventories and sampling for research. We studied root morphology of tanoak (Notholithocarpus densiflorus), an important component in mixed evergreen forests of California and Oregon, USA. Tanoak re-sprouts from belowground lignotubers after disturbances, and stores an unknown amount of carbon in coarse roots underground. We sought to ascribe explanatory nomenclature to roots’ morphological features and to identify models describing tanoak root morphology. Twelve tanoak root systems were excavated, dissected, and measured. Roots tapered according to their circumference and location. Larger roots closer to the lignotuber (located at the base of the tree stem) tapered more rapidly per unit of length. Tanoak roots forked frequently. Root cross-sectional area was preserved after forking events (i.e., the sum of cross-sectional areas for smaller roots on one side of the fork correlated with the adjoining large root). Occurrence and quantity of root branches (small roots branching laterally from larger roots) was dependent upon length of the source root segment. Our models of tanoak root morphology are designed to be organized together to estimate biomass of any segment or collection of lateral roots (e.g., roots lost/missed during excavation, or in lieu of destructive sampling), given root diameter at a known distance from the lignotuber. The taper model gives distal- and proximal-end diameters for calculation of volume for segments of root tapering between forks. Frequency of forking and branching can also be predicted. Summing the predicted mass of each lateral root segment, branch, and forked segment would produce an estimate of mass for a contiguous network of lateral roots.展开更多
文摘The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.
基金Project supported by the National Natural Science Foundation of China (No. 30270282) and the Science Foundation of Guangdong Province (No. 003031), China
文摘Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broadqeaved forest; 50.61 t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. This is the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.
文摘Powerful alluvial rivers in the northern Alborz mountain ranges erode river banks due to having high slopes.Most of these rivers flow in forest areas.In this research,the rate of the river bank erosion was examined using the exposed roots of the trees.For this purpose,8 reaches of Lavij Stream were investigated.To determine the first year of root exposure,two sets of macroscopic and microscopic indicators were utilized.Accordingly,the rate of the stream bank erosion was estimated.The results were analyzed by using statistical test,which showed insignificant differences between the two groups of indicators.Due to its more abundance(frequency)on the margins and easy detection of its root through the exposure(macroscopic and microscopic)indicators,Alnus glutinosa(black alder)species could be more easily and accurately analyzed as compared with any other tree species in the region.The mean erosion rate of the riverbank using the extruded roots was estimated to be 0.08 m/yr.The hydrological analyses of flood flows showed that 95%of Lavij Stream bank erosion was caused by the river bank full discharges with a return period of 1-3 years.
文摘As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a numerical example is demonstrated.
文摘Descriptions of tree root morphology inform design of belowground biomass and carbon inventories and sampling for research. We studied root morphology of tanoak (Notholithocarpus densiflorus), an important component in mixed evergreen forests of California and Oregon, USA. Tanoak re-sprouts from belowground lignotubers after disturbances, and stores an unknown amount of carbon in coarse roots underground. We sought to ascribe explanatory nomenclature to roots’ morphological features and to identify models describing tanoak root morphology. Twelve tanoak root systems were excavated, dissected, and measured. Roots tapered according to their circumference and location. Larger roots closer to the lignotuber (located at the base of the tree stem) tapered more rapidly per unit of length. Tanoak roots forked frequently. Root cross-sectional area was preserved after forking events (i.e., the sum of cross-sectional areas for smaller roots on one side of the fork correlated with the adjoining large root). Occurrence and quantity of root branches (small roots branching laterally from larger roots) was dependent upon length of the source root segment. Our models of tanoak root morphology are designed to be organized together to estimate biomass of any segment or collection of lateral roots (e.g., roots lost/missed during excavation, or in lieu of destructive sampling), given root diameter at a known distance from the lignotuber. The taper model gives distal- and proximal-end diameters for calculation of volume for segments of root tapering between forks. Frequency of forking and branching can also be predicted. Summing the predicted mass of each lateral root segment, branch, and forked segment would produce an estimate of mass for a contiguous network of lateral roots.