The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr...The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.展开更多
We construct a tree wavelet approximation by using a constructive greedy scheme(CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a presc...We construct a tree wavelet approximation by using a constructive greedy scheme(CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a prescribed global convergence rate and establish embedding properties of this class. We provide sufficient conditions on a tree index set and on bi-orthogonal wavelet bases which ensure optimal order of convergence for the wavelet approximations encoded on the tree index set using the bi-orthogonal wavelet bases. We then show that if we use the tree index set associated with the partition generated by the CGS to encode a wavelet approximation, it gives optimal order of convergence.展开更多
Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some are...Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.展开更多
The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investiga...The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investigated based on their main directions. It is proved to be impossible to represent directional singularities optimally by a multi-resolution analysis (MRA) of L2(R2). Based on the above results, a new algorithm to construct Q-shift dual tree complex wavelet is proposed. By optimizing the main direction of parameterized wavelet filters, the difficulty in choosing stop-band frequency is overcome and the performances of the designed wavelet are improved too. Furthermore, results of image enhancement by various multi-scale methods are given, which show that the new designed Q-shift complex wavelet do offer significant improvement over the conventionally used wavelets. Direction sensitivity is an important index to the performance of 2D wavelets.展开更多
A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT ha...A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.展开更多
Based on grow tree composite model, Finite Field Wavelet Grow Tree (FW-GT) was proposed in this paper. FW-GT is a novel framework to be used in data encryption enhancing data security. It is implemented by replacement...Based on grow tree composite model, Finite Field Wavelet Grow Tree (FW-GT) was proposed in this paper. FW-GT is a novel framework to be used in data encryption enhancing data security. It is implemented by replacement operator and wavelet operator. Forward integration and inverse decomposition of FW-GT are performed by replacement, inverse wavelets and its corresponding replacement, wavelet transforms. Replacement operator joined nonlinear factor, wavelet operator completed data transformation between lower dimensional space and higher dimensional space. FW-GT security relies on the difficulty of solving nonlinear equations over finite fields. By using FW-GT, high security of data could be obtained at the cost of low computational complexity. It proved FW-GT algorithm’s correctness in this paper. The experimental result and theory analysis shows the excellent performance of the algorithm.展开更多
We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin...We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.展开更多
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a...Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.展开更多
The purpose of this paper is to investigate the mean size formula of wavelet packets (wavelet subdivision tree) on Heisenberg group. The formula is given in terms of the p-norm joint spectral radius. The vector refi...The purpose of this paper is to investigate the mean size formula of wavelet packets (wavelet subdivision tree) on Heisenberg group. The formula is given in terms of the p-norm joint spectral radius. The vector refinement equations on Heisenberg group and the subdivision tree on the Heisenberg group are discussed. The mean size formula of wavelet packets can be used to describe the asymptotic behavior of norm of the subdivision tree.展开更多
针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本...针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本处理。其次,对提取的短样本进行变分模态分解与特征提取,完成训练集和测试集的构建。然后,使用训练集训练CART决策树分类模型,同时引入随机搜索和K折交叉验证用于模型关键参数优化,以获取理想的轴承故障分类模型。测试集验证结果表明,该方法不但能实现多种轴承故障的有效诊断、在含噪测试集中表现良好,而且单个样本的数据长度和采样时长的缩短效果明显。展开更多
基金Supported by the National Natural Science Foundation of China (10971189, 11001247)the Zhejiang Natural Science Foundation of China (Y6090091)
文摘The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.
基金This work was supported in part by the US National Science Foundation under grant DMS-9973427 and CCR-0312113by NASA under grant NCC5-399+1 种基金by Natural Science Foundation of China under grant 10371122by the Chinese Academy of Sciences under the program of"One Hundred Distinguished Young Scientists".
文摘We construct a tree wavelet approximation by using a constructive greedy scheme(CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a prescribed global convergence rate and establish embedding properties of this class. We provide sufficient conditions on a tree index set and on bi-orthogonal wavelet bases which ensure optimal order of convergence for the wavelet approximations encoded on the tree index set using the bi-orthogonal wavelet bases. We then show that if we use the tree index set associated with the partition generated by the CGS to encode a wavelet approximation, it gives optimal order of convergence.
基金supported by a grant from the National High Technology Research and Development Program of China (863 Program) (No.2008AA04A107)supported by a grant from the Major Programs of Guangdong-Hongkong in the Key Domain (No.2009498B21)
文摘Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.
基金Supported by National Natural Science Foundation of P.R.China (10171109)the Special Research Fund for Doctoral Program of Higher Education of P. R. China (20049998006)
文摘The conception of 'main direction' of multi-dimensional wavelet is established in this paper, and the capabilities of several classical complex wavelets for representing directional singularities are investigated based on their main directions. It is proved to be impossible to represent directional singularities optimally by a multi-resolution analysis (MRA) of L2(R2). Based on the above results, a new algorithm to construct Q-shift dual tree complex wavelet is proposed. By optimizing the main direction of parameterized wavelet filters, the difficulty in choosing stop-band frequency is overcome and the performances of the designed wavelet are improved too. Furthermore, results of image enhancement by various multi-scale methods are given, which show that the new designed Q-shift complex wavelet do offer significant improvement over the conventionally used wavelets. Direction sensitivity is an important index to the performance of 2D wavelets.
文摘A new simple and efficient dual tree analytic wavelet transform based on Discrete Cosine Harmonic Wavelet Transform DCHWT (ADCHWT) has been proposed and is applied for signal and image denoising. The analytic DCHWT has been realized by applying DCHWT to the original signal and its Hilbert transform. The shift invariance and the envelope extraction properties of the ADCHWT have been found to be very effective in denoising speech and image signals, compared to that of DCHWT.
文摘Based on grow tree composite model, Finite Field Wavelet Grow Tree (FW-GT) was proposed in this paper. FW-GT is a novel framework to be used in data encryption enhancing data security. It is implemented by replacement operator and wavelet operator. Forward integration and inverse decomposition of FW-GT are performed by replacement, inverse wavelets and its corresponding replacement, wavelet transforms. Replacement operator joined nonlinear factor, wavelet operator completed data transformation between lower dimensional space and higher dimensional space. FW-GT security relies on the difficulty of solving nonlinear equations over finite fields. By using FW-GT, high security of data could be obtained at the cost of low computational complexity. It proved FW-GT algorithm’s correctness in this paper. The experimental result and theory analysis shows the excellent performance of the algorithm.
基金CulturalHeritage Protection Program of State Administration of CulturalHeritage (200001).
文摘We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.
基金National Natural Science Foundation of China(No.51303131)
文摘Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.
基金the National Natural Science Foundation of China (10471123 10771190)
文摘The purpose of this paper is to investigate the mean size formula of wavelet packets (wavelet subdivision tree) on Heisenberg group. The formula is given in terms of the p-norm joint spectral radius. The vector refinement equations on Heisenberg group and the subdivision tree on the Heisenberg group are discussed. The mean size formula of wavelet packets can be used to describe the asymptotic behavior of norm of the subdivision tree.
文摘针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本处理。其次,对提取的短样本进行变分模态分解与特征提取,完成训练集和测试集的构建。然后,使用训练集训练CART决策树分类模型,同时引入随机搜索和K折交叉验证用于模型关键参数优化,以获取理想的轴承故障分类模型。测试集验证结果表明,该方法不但能实现多种轴承故障的有效诊断、在含噪测试集中表现良好,而且单个样本的数据长度和采样时长的缩短效果明显。