Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and mole...Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics,often posing challenges for precise diagnoses using conventional methods.To this end,this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family.Methods:The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis.Novel compound heterozygous variants of the GPI gene,c.174C>A(p.Asn58Lys)and c.1538G>T(p.Trp513Leu),were identified using whole-exome and Sanger sequencing.The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure.Results:By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study,we found that most variants were located in exons 3,4,12,and 18,with a few localized in exons 8,9,and 14.This study identified novel compound heterozygous variants associated with GPI deficiency.These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids.Conclusion:Early family-based sequencing analyses,especially for patients with congenital anemia,can help increase diagnostic accuracy for GPI deficiency,improve child healthcare,and enable genetic counseling.展开更多
[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phyl...[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family展开更多
A full-length cDNA encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from maize (Zea mays L.) was cloned by the methods of reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplifica...A full-length cDNA encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from maize (Zea mays L.) was cloned by the methods of reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE), and designated as mF2KP. The encoded protein is composed of two regions. Its COOH-terminal region is catalytic region and homologous to the enzymes from other eukaryotes; and its NH 2-terminal region is common and special region only in plant. A truncated fragment of mF2KP covering integrated catalytic region was expressed in Escherichia coli. The fusion protein had the activities of fructose-6-phosphate, 2-kinase as well as fructose-2,6-bisphosphatase. Northern blot showed that the transcript level of mF2KP in seedlings initiated from strong-vigor seeds is lower than that from weak-vigor seeds.展开更多
AIM: To investigate the effect of arg-gly-asp-mannose-6 phosphate (RGD-M6P) on the activation and proliferation of primary hepatic stellate cells in vitro. METHODS: Hepatic steUate cells (HSCs) were isolated fro...AIM: To investigate the effect of arg-gly-asp-mannose-6 phosphate (RGD-M6P) on the activation and proliferation of primary hepatic stellate cells in vitro. METHODS: Hepatic steUate cells (HSCs) were isolated from rats by in situ collagenase perfusion of liver and 18% Nycodenz gradient centrifugation and cultured on uncoated plastic plates for 24 h with DMEM containing 10% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, HSCs were cultured in 2% FBS/DMEM with transforming growth factor 131, M6P, RGD, or RGD- M6P, respectively. Cell morphology was observed under inverted microscope, smooth muscle α-actin (α-SMA) was detected by immunocytochemistry, type Ⅲ procollagen (PCⅢ) in supernatant was determined by radioimmunoassay, and the proliferation rate of HSCs was assessed by flow cytometry. RESULTS: RGD-M6P significantly inhibited the morphological transformation and the α-SMA and PC Ⅲ expressions of HSCs in vitro and also dramatically prevented the proliferation of HSCs in vitro. Such effects were remarkably different from those of RGD or M6R CONCLUSION: The new compound, RGD-M6P, which has a dramatic effect on primary cultured HSCs in vitro, can inhibit the transformation of HSCs in culture caused by TGFβ1, suppresses the expression of PCIII and decreases proliferation rate of HSC. RGD-M6P can be applied as a selective drug carrier targeting at HSCs, which may be a new approach to the prevention and treatment of liver fibrosis.展开更多
In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding...In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding region of PsG6PDH gene, was established. The recombinant was identified by lawn-PCR and double enzyme digestion and then transformed into expression host XA90 and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 100 kD polypeptide of G6PDH fusion protein. The results showed that the expressed amount of the fusion protein culminated after 1 mmol·L^-1 IPTG treatment for 4h and that pET-G product was predominately soluble and not extra-cellular secreting.展开更多
A 1 207 bp cDNA fragment (PsG6PDH) was amplified by RT-PCR from cold-induced total RNA of the freez- ing-tolerant P. Suaveolens, using primers based on the highly conserved region of published plant glucose-6-phospha...A 1 207 bp cDNA fragment (PsG6PDH) was amplified by RT-PCR from cold-induced total RNA of the freez- ing-tolerant P. Suaveolens, using primers based on the highly conserved region of published plant glucose-6-phosphate dehydro- genase (G6PDH) genes. The sequence analysis showed that PsG6PDH coding region had 1 101 bp and encoded 367 predicted amino acid residues. Moreover, the nucleotide sequence of PsG6PDH showed 83%, 82%, 79%, 79% and 78% identity, and the derived amino acid sequence shared 44.2%, 44.7%, 42.0%, 40.5% and 43.9% identity with those of the Solanum tuberosum, Nicotiana ta- bacum, Triticum aestivum, Oryza sativa and Arabidopsis thaliana, respectively. The results show that PsG6PDH is a new member of G6PDH gene family and belongs to the cytosolic G6PDH gene. This is the first report on cloning of the G6PDH gene from woody plants.展开更多
Glucose-6-phosphate dehydrogenase(G6PD) is a cytoplasmic enzyme with an important function in cell oxidative damage prevention.Erythrocytes have a predisposition towards oxidized environments due to their lack of mito...Glucose-6-phosphate dehydrogenase(G6PD) is a cytoplasmic enzyme with an important function in cell oxidative damage prevention.Erythrocytes have a predisposition towards oxidized environments due to their lack of mitochondria,giving G6 PD a major role in its stability.G6 PD deficiency(G6PDd) is the most common enzyme deficiency in humans:it affects approximately 400 million individuals worldwide.The overall G6 PDd allele frequency across malaria endemic countries is estimated to be 8%.corresponding to approximately 220 million males and 133 million females.However,there are no reports on the prevalence of G6 PDd in Andean communities where bartonellosis is prevalent.展开更多
Hepatocellular carcinoma(HCC)is the third most common cause of cancer-related death worldwide with high mortality.The incidence of HCC is increasing in China.Abnormal activation of glucose-6-phosphate dehydrogenase(G6...Hepatocellular carcinoma(HCC)is the third most common cause of cancer-related death worldwide with high mortality.The incidence of HCC is increasing in China.Abnormal activation of glucose-6-phosphate dehydrogenase(G6 PD)exists in all malignant tumors,including HCC,and is closely related to the development of HCC.In addition,the differential expression of non-coding RNAs is closely related to the development of HCC.This systematic review focuses on the relationship between G6 PD,HCC,and noncoding RNA,which form the basis for the circ RNA/mi RNA/G6 PD axis in HCC.The circular RNA(circ RNA)/micro RNA(mi RNA)/G6 PD axis is involved in development of HCC.We proposed that non-coding RNA molecules of the circ RNA/mi RNA/G6 PD axis may be novel biomarkers for the pathological diagnosis,prognosis,and targeted therapy of HCC.展开更多
In plants, non-green plastids in heterotrophic tissues are sites for starch and fatty acids biosynthesis,which are essential for plant development and reproduction. Distinct from chloroplasts, the metabolites for thes...In plants, non-green plastids in heterotrophic tissues are sites for starch and fatty acids biosynthesis,which are essential for plant development and reproduction. Distinct from chloroplasts, the metabolites for these processes in non-green plastids have to be imported through specific transporters. Glucose 6-Phosphate/Phosphate Translocator 1 is required for the uptake of cytosolic Glucose 6-Phosphate into non-green plastids. In Arabidopsis, GPT1 has been demonstrated to play essential roles in male, female gametophyte and embryo development. However, the roles of GPTs in other species are yet largely unknown. Here, we reported that rice OsGPT1 is indispensable for normal tapetal degeneration and pollen exine formation during anther and pollen development. OsGPT1 is localized in the plastid and distributed in the anther wall layers and late-stage pollen grains. Different from the gametic defects caused by mutation in At GPT1, disruption of OsGPT1 does not affect male and female gamete transmission as well as embryo development. On the contrary, osgpt1 mutant exhibits delayed tapetum degeneration,decreased Ubisch bodies formation and thinner pollen exine, leading to pollen abortion at the mature stage. Furthermore, the expression of several genes involved in tapetal programmed cell death(PCD)and sporopollenin formation is decreased in osgpt1. Our study suggests that OsGPT1 coordinates the development of anther sporophytic tissues and the male gametophyte by integrating carbohydrate and fatty acid metabolism in the plastid.展开更多
Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the most common enzyme deficiency of human erythrocyte affecting more than 400 million people worldwide. In India, G6PD deficiency was first reported in 1963 and ...Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the most common enzyme deficiency of human erythrocyte affecting more than 400 million people worldwide. In India, G6PD deficiency was first reported in 1963 and since then various investigations have been conducted across country. The objective of this work was to study the prevalence of G6PD deficiency in different ethnic, caste and linguistic groups of Indian population. A systematic search of published literature was undertaken and the wide variability of G6PD deficiency has been observed ranging from 0% - 30.7% among the different caste, ethnic, and linguistic groups of India. It was observed that the incidence of G6PD deficiency was found to be considerably higher among the tribes (9.86%) as compared to other ethnic groups (7.34%) and significantly higher in males as compared to females.展开更多
Glucose-6-phosphate dehydrogenase has been purified from pigeon pea (Cajanus cajan) seeds and subjected to characterization. The enzyme was purified 123.69 fold with a yield of 21.37% by ammonium sulphate fractionatio...Glucose-6-phosphate dehydrogenase has been purified from pigeon pea (Cajanus cajan) seeds and subjected to characterization. The enzyme was purified 123.69 fold with a yield of 21.37% by ammonium sulphate fractionation, PEG-4000 precipitation, CM cellulose column chromatography and DEAE cellulose column chromatography. The catalytically active enzyme is a dimer of 113 KDa with a subunit molecular weight of 55 KDa. Thermal inactivation of enzyme follows first order kinetics at 30°C and 40°C with half life of 6 and 1.5 min respectively. Km value for glucose-6-phosphate and NADP+ was found to be 2.68 mM and 0.75 mM respectively whereas Vmax value was found to be 0.11 U/mL and 0.13 U/mL respectively. The enzyme shows more affinity towards NADP+ than glucose-6-phosphate. The pKa value was found to be 10.41 indicating that the amino acid residue at active site might be lysine. The enzyme exhibited maximum catalytic activity at pH 8.2. The enzyme was found to be highly thermosensitive with gradual loss of activity above 30°C temperature.展开更多
Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle ce...Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.展开更多
Objective:To investigate 4 combinations of mutations responsible for glucose-6—phosphate dehydrogenase(G6PD) deficiency in a rural community of Burkina Faso,a malaria endemic country.Methods:Two hundred individuals i...Objective:To investigate 4 combinations of mutations responsible for glucose-6—phosphate dehydrogenase(G6PD) deficiency in a rural community of Burkina Faso,a malaria endemic country.Methods:Two hundred individuals in a rural community were genotyped for the mutations A376 G.G202A,A542 T,G680T and T968 C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism.Results:The prevalence of the G6 PD deficiency was 9.5%,in the study population.It was significantly higher in men compared to women(14.23%vs 6.0%,P=0.049).The 202A/376 G G6PD Awas the only deficient variant detected.Plasmodium falciparum asymptomatic parasitemia was significantly higher among the C6PD-non—deficient persons compared to the G6PD-deficient(P<0.001).The asymptomatic parasitemia was also significantly higher among G(SPI) nondeficient compared to C6PD—heterozygous females(P<0.001).Conclusions:This study showed that the G6 PD A- variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.展开更多
The present study was designed to explore the possible mechanism of obesity associated metabolic syndrome. 150 subjects (120 men and 30 women) in the age-group of 17 - 26 years were studied. Body Mass Index and Waist-...The present study was designed to explore the possible mechanism of obesity associated metabolic syndrome. 150 subjects (120 men and 30 women) in the age-group of 17 - 26 years were studied. Body Mass Index and Waist-to-Hip Ratio were taken as a measure of generalized obesity and abdominal adiposity. The serum concentration of glucose-6-phosphate dehydrogenase increased with increasing levels of Body Mass Index and was found to be significant in obese subjects (Body Mass Index ≥ 30.0 kg/m2) and more so in the obese subjects with abdominal adiposity (p = 0.002) as compared to normal-weight subjects. Karl Pearson coefficient of correlation revealed a significant positive correlation of glucose-6-phosphate dehydrogenase with Body Mass Index (r = 0.499;p < 0.001) and malondialdehyde (a biomarker of oxidative stress) (r = 0.736;p < 0.001) but inverse correlation with adiponectin (r = -0.524;p < 0.001). Thus, we conclude that increased expression of glucose-6-phosphate dehydrogenase in obese subjects (more if it is associated with abdominal adiposity) might mediate the onset of obesity associated metabolic disorders by increasing oxidative stress.展开更多
Objective: To investigate whether glucose-6-phosphate isomerase (G6PI) antigen and anti-G6PI antibodies could be applied for the clinical diagnostic markers of rheumatoid arthritis (RA) and its associations with RA ac...Objective: To investigate whether glucose-6-phosphate isomerase (G6PI) antigen and anti-G6PI antibodies could be applied for the clinical diagnostic markers of rheumatoid arthritis (RA) and its associations with RA activity states. Methods: The levels of G6PI antigens and anti-G6PI Abs in sera from 176 RA patients in different states, 35 non-RA patients and 100 healthy donors and in synovia fluids from 33 patients and 11 non-RA patients were measured by ELISA. Results: The sensitivity and specificity of G6PI antigens in the RA patients were 75.0% and 93.3%, respectively. The levels of serum G6PI antigens in 176 RA patients were significantly higher than non-RA patients and the health controls. Especially, there was a significant difference between the active phase and the inactive phase in G6PI antigens levels. The levels of G6PI antigens in synovia fluid were also significantly higher in RA groups than in non-RA patients. With the values of the anti-G6PI Abs in sera, there were no marked differences among RA, non-RA patients and health controls. Also, there was no significant difference between the active phase and the inactive phase in RA patients. However, there were no significant differences of G6PI and anti-G6PI between RA patients and health controls in synovial fluid. Conclusions: G6PI is highly correlated with the activity states of RA, and could be applied for a clinical biomarker with high sensitivity and specificity for the diagnosis of RA.展开更多
Accumulated evidences have demonstrated that signal transducer and activator of transcription 3(STAT3)is a critical link between inflammation and cancer.Multiple studies have indicated that persistent activation of ST...Accumulated evidences have demonstrated that signal transducer and activator of transcription 3(STAT3)is a critical link between inflammation and cancer.Multiple studies have indicated that persistent activation of STAT3 in epithelial/tumor cells in inflammation-associated colorectal cancer(CRC)is associated with sphingosine-1-phosphate(S1P)receptor signaling.In inflammatory response whereby interleukin(IL)-6 production is abundant,STAT3-mediated pathways were found to promote the activation of sphingosine kinases(SphK1and SphK2)leading to the production of S1P.Reciprocally,S1P encourages the activation of STAT3 through a positive autocrine-loop signaling.The crosstalk between IL-6,STAT3 and sphingolipid regulated pathways may play an essential role in tumorigenesis and tumor progression in inflamed intestines.Therapeutics targeting both STAT3 and sphingolipid are therefore likely to contribute novel and more effective therapeutic strategies against inflammation-associated CRC.展开更多
Trehalose plays an important role in protecting organisms from various stresses. Trehalose-6-phosphate synthase (TPS) is the key enzyme in trehalose synthesis, but in insects only a few TPS genes have been identifie...Trehalose plays an important role in protecting organisms from various stresses. Trehalose-6-phosphate synthase (TPS) is the key enzyme in trehalose synthesis, but in insects only a few TPS genes have been identified and their function has not been well characterized. To better understand the function of TPS in insects, a complete TPS complementary DNA (eDNA) clone was obtained from the fat body of the locust Locusta migratoria manilensis (GenBank accession number: EU131894). The full-length cDNA is 2 806 bp, including an open reading frame of 2 442 bp, which encodes an 813 amino acids protein with a calculated molecular weight of 91 976 Daltons and an isoelectric point of 6.14. The deduced amino acid sequence is highly similar to other published insect TPS and its C-terminal also has a region homologous to trehalose phosphate phsophatase (TPP). Semi-quantitative analysis indicated that the TPS transcript was expressed not only in fat body, but also in gut, hemolymph and leg muscle. These data may facilitate studies of TPS function in insects and improve our understanding of trehalose metabolism.展开更多
Trehalose 6-phosphate synthase(TPS),an enzyme that hydrolyzes two glucose molecules to yield trchalose,plays a pivotal role in various physiological processes.In this study,we cloned the trehalose-6-phosphate synthase...Trehalose 6-phosphate synthase(TPS),an enzyme that hydrolyzes two glucose molecules to yield trchalose,plays a pivotal role in various physiological processes.In this study,we cloned the trehalose-6-phosphate synthase gene(HvTPS)and investigated its expression patterns in various tssues and d:velopmental stages in Heortia vitessoides Moore(Lepidoptera:Crambidac).HvTPS was highly expressed in the fat body and after pupation or before molting.We knocked down TPS in H.vitessoides by RNA interference and found that 3.0μg of dsHvTPS resulted in optimal interference at 24 h and 36 h post-injection and caused a sharp decline in the survival rate during the 5th instar larval-pupal stage and obviously abnormal or lethal phenotypes.Additionally.compared to the controls,TPS activity and trehalose contents were significantly lower and the glucose content was significantly higher 24 h or 36 h after injection with 3.0μg of dsHIvTPS.Furthermore,the silencing of HvTPS suppressed the cxpression of six key genecs in the chitin biosynthesis pathway and one key gene related to lipid catabolism.The expression levels of two genes associated with lipid biosynthesis were upregulated.These results strongly suggest that HvTPS is essential for the normal growth and development of H.vitessoides and provide a reference for further studies of the utility of key genes involved in chitin and lipid biosynthesis for controlling insect development.展开更多
Trehalose is the principal sugar circulating in the hemolymph of insects,and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase(TPS)and trehalose-6-phosphate phosphatase(TPP).Insect TPS is a fused enzy...Trehalose is the principal sugar circulating in the hemolymph of insects,and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase(TPS)and trehalose-6-phosphate phosphatase(TPP).Insect TPS is a fused enzyme containing both TPS do-main and TPP domain.Thus,many insects do not possess TPP genes as TPSs have re-placed the function of TPPs.However,TPPs are widely distributed across the dipteran insects,while the roles they play remain largely unknown.In this study,3 TPP genes from notorious dipteran pest Bactrocera minax(BmiTPPB,BmiTPPCl,and BmiTPPC2)were identified and characterized.The different temporal-spatial expression patterns of 3 BmiTPPs implied that they exert different functions in B.minax.Recombinant BmiTPPs were heterologously expressed in yeast cells,and all purified proteins exhibited enzy-matic activities,despite the remarkable disparity in performance between BmiTPPB and BmiTPPCs.RNA interference revealed that all BmiTPPs were successfully downregulated after double-stranded RNA injection,leading to decreased trehalose content and increased glucose content.Also,suppression of BmiTPPs significantly affected expression of down-stream genes and increased the mortality and malformation rate.Collectively,these results indicated that all 3 BmiTPPs in B.minax are involved in trehalose synthesis and metamor-phosis.Thus,these genes could be evaluated as insecticidal targets for managing B.minax,andevenforotherdipteranpests.展开更多
AIM:To investigate the relationship between loss of heterozygosity (LOH) for mannose 6-phosphate/insulin- like growth factor 2 receptor (M6P/IGF2R) and the outcomes for primary HCC patients treated with partial hepate...AIM:To investigate the relationship between loss of heterozygosity (LOH) for mannose 6-phosphate/insulin- like growth factor 2 receptor (M6P/IGF2R) and the outcomes for primary HCC patients treated with partial hepatectomy. METHODS: The LOH for M6P/IGF2R in primary HCC patients was assessed using six different gene-specific nucleotide polymorphisms. The patients studied were enrolled to undergo partial hepatectomy. RESULTS: M6P/IGF2R was found to be polymorphic in 73.3% (22/30) of the patients, and of these patients, 50.0% (11/22) had tumors showing LOH in M6P/IGF2R. Loss of heterozygosity in M6P/IGF2R was associated with significant reductions in the two year overall survival rate (24.9% vs 65.5%; P = 0.04) and the disease-free survival rate (17.8% vs 59.3%; P = 0.03). CONCLUSION: These results show M6P/IGF2R LOH predicts poor clinical outcomes in surgically resected primary HCC patients.展开更多
文摘Objective:Glucose-6-phosphate isomerase(GPI)deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants.This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics,often posing challenges for precise diagnoses using conventional methods.To this end,this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family.Methods:The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis.Novel compound heterozygous variants of the GPI gene,c.174C>A(p.Asn58Lys)and c.1538G>T(p.Trp513Leu),were identified using whole-exome and Sanger sequencing.The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure.Results:By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study,we found that most variants were located in exons 3,4,12,and 18,with a few localized in exons 8,9,and 14.This study identified novel compound heterozygous variants associated with GPI deficiency.These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids.Conclusion:Early family-based sequencing analyses,especially for patients with congenital anemia,can help increase diagnostic accuracy for GPI deficiency,improve child healthcare,and enable genetic counseling.
基金Supported by Seeding Raising Project from Guangdong Provincial Department(LYM10040)Open Research Project of Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants,MOE,Beijing Forestry University(FOP2010-4)~~
文摘[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family
文摘A full-length cDNA encoding fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase from maize (Zea mays L.) was cloned by the methods of reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE), and designated as mF2KP. The encoded protein is composed of two regions. Its COOH-terminal region is catalytic region and homologous to the enzymes from other eukaryotes; and its NH 2-terminal region is common and special region only in plant. A truncated fragment of mF2KP covering integrated catalytic region was expressed in Escherichia coli. The fusion protein had the activities of fructose-6-phosphate, 2-kinase as well as fructose-2,6-bisphosphatase. Northern blot showed that the transcript level of mF2KP in seedlings initiated from strong-vigor seeds is lower than that from weak-vigor seeds.
基金Supported by National Natural Science Foundation of China,No.30170412
文摘AIM: To investigate the effect of arg-gly-asp-mannose-6 phosphate (RGD-M6P) on the activation and proliferation of primary hepatic stellate cells in vitro. METHODS: Hepatic steUate cells (HSCs) were isolated from rats by in situ collagenase perfusion of liver and 18% Nycodenz gradient centrifugation and cultured on uncoated plastic plates for 24 h with DMEM containing 10% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, HSCs were cultured in 2% FBS/DMEM with transforming growth factor 131, M6P, RGD, or RGD- M6P, respectively. Cell morphology was observed under inverted microscope, smooth muscle α-actin (α-SMA) was detected by immunocytochemistry, type Ⅲ procollagen (PCⅢ) in supernatant was determined by radioimmunoassay, and the proliferation rate of HSCs was assessed by flow cytometry. RESULTS: RGD-M6P significantly inhibited the morphological transformation and the α-SMA and PC Ⅲ expressions of HSCs in vitro and also dramatically prevented the proliferation of HSCs in vitro. Such effects were remarkably different from those of RGD or M6R CONCLUSION: The new compound, RGD-M6P, which has a dramatic effect on primary cultured HSCs in vitro, can inhibit the transformation of HSCs in culture caused by TGFβ1, suppresses the expression of PCIII and decreases proliferation rate of HSC. RGD-M6P can be applied as a selective drug carrier targeting at HSCs, which may be a new approach to the prevention and treatment of liver fibrosis.
文摘In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding region of PsG6PDH gene, was established. The recombinant was identified by lawn-PCR and double enzyme digestion and then transformed into expression host XA90 and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 100 kD polypeptide of G6PDH fusion protein. The results showed that the expressed amount of the fusion protein culminated after 1 mmol·L^-1 IPTG treatment for 4h and that pET-G product was predominately soluble and not extra-cellular secreting.
基金Supported by the National Natural Science Foundation of China (Grant No. 30271093)
文摘A 1 207 bp cDNA fragment (PsG6PDH) was amplified by RT-PCR from cold-induced total RNA of the freez- ing-tolerant P. Suaveolens, using primers based on the highly conserved region of published plant glucose-6-phosphate dehydro- genase (G6PDH) genes. The sequence analysis showed that PsG6PDH coding region had 1 101 bp and encoded 367 predicted amino acid residues. Moreover, the nucleotide sequence of PsG6PDH showed 83%, 82%, 79%, 79% and 78% identity, and the derived amino acid sequence shared 44.2%, 44.7%, 42.0%, 40.5% and 43.9% identity with those of the Solanum tuberosum, Nicotiana ta- bacum, Triticum aestivum, Oryza sativa and Arabidopsis thaliana, respectively. The results show that PsG6PDH is a new member of G6PDH gene family and belongs to the cytosolic G6PDH gene. This is the first report on cloning of the G6PDH gene from woody plants.
文摘Glucose-6-phosphate dehydrogenase(G6PD) is a cytoplasmic enzyme with an important function in cell oxidative damage prevention.Erythrocytes have a predisposition towards oxidized environments due to their lack of mitochondria,giving G6 PD a major role in its stability.G6 PD deficiency(G6PDd) is the most common enzyme deficiency in humans:it affects approximately 400 million individuals worldwide.The overall G6 PDd allele frequency across malaria endemic countries is estimated to be 8%.corresponding to approximately 220 million males and 133 million females.However,there are no reports on the prevalence of G6 PDd in Andean communities where bartonellosis is prevalent.
基金supported in part by grants from the National Natural Sciences Foundation of China(81872883)2019 High-level Pre-research Project of Zhejiang Shuren University(KXJ1218607)。
文摘Hepatocellular carcinoma(HCC)is the third most common cause of cancer-related death worldwide with high mortality.The incidence of HCC is increasing in China.Abnormal activation of glucose-6-phosphate dehydrogenase(G6 PD)exists in all malignant tumors,including HCC,and is closely related to the development of HCC.In addition,the differential expression of non-coding RNAs is closely related to the development of HCC.This systematic review focuses on the relationship between G6 PD,HCC,and noncoding RNA,which form the basis for the circ RNA/mi RNA/G6 PD axis in HCC.The circular RNA(circ RNA)/micro RNA(mi RNA)/G6 PD axis is involved in development of HCC.We proposed that non-coding RNA molecules of the circ RNA/mi RNA/G6 PD axis may be novel biomarkers for the pathological diagnosis,prognosis,and targeted therapy of HCC.
基金supported the National Natural Science Foundation of China (U19A2031)the National Key Research and Development Program of China (2016YFD0100903)。
文摘In plants, non-green plastids in heterotrophic tissues are sites for starch and fatty acids biosynthesis,which are essential for plant development and reproduction. Distinct from chloroplasts, the metabolites for these processes in non-green plastids have to be imported through specific transporters. Glucose 6-Phosphate/Phosphate Translocator 1 is required for the uptake of cytosolic Glucose 6-Phosphate into non-green plastids. In Arabidopsis, GPT1 has been demonstrated to play essential roles in male, female gametophyte and embryo development. However, the roles of GPTs in other species are yet largely unknown. Here, we reported that rice OsGPT1 is indispensable for normal tapetal degeneration and pollen exine formation during anther and pollen development. OsGPT1 is localized in the plastid and distributed in the anther wall layers and late-stage pollen grains. Different from the gametic defects caused by mutation in At GPT1, disruption of OsGPT1 does not affect male and female gamete transmission as well as embryo development. On the contrary, osgpt1 mutant exhibits delayed tapetum degeneration,decreased Ubisch bodies formation and thinner pollen exine, leading to pollen abortion at the mature stage. Furthermore, the expression of several genes involved in tapetal programmed cell death(PCD)and sporopollenin formation is decreased in osgpt1. Our study suggests that OsGPT1 coordinates the development of anther sporophytic tissues and the male gametophyte by integrating carbohydrate and fatty acid metabolism in the plastid.
文摘Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the most common enzyme deficiency of human erythrocyte affecting more than 400 million people worldwide. In India, G6PD deficiency was first reported in 1963 and since then various investigations have been conducted across country. The objective of this work was to study the prevalence of G6PD deficiency in different ethnic, caste and linguistic groups of Indian population. A systematic search of published literature was undertaken and the wide variability of G6PD deficiency has been observed ranging from 0% - 30.7% among the different caste, ethnic, and linguistic groups of India. It was observed that the incidence of G6PD deficiency was found to be considerably higher among the tribes (9.86%) as compared to other ethnic groups (7.34%) and significantly higher in males as compared to females.
文摘Glucose-6-phosphate dehydrogenase has been purified from pigeon pea (Cajanus cajan) seeds and subjected to characterization. The enzyme was purified 123.69 fold with a yield of 21.37% by ammonium sulphate fractionation, PEG-4000 precipitation, CM cellulose column chromatography and DEAE cellulose column chromatography. The catalytically active enzyme is a dimer of 113 KDa with a subunit molecular weight of 55 KDa. Thermal inactivation of enzyme follows first order kinetics at 30°C and 40°C with half life of 6 and 1.5 min respectively. Km value for glucose-6-phosphate and NADP+ was found to be 2.68 mM and 0.75 mM respectively whereas Vmax value was found to be 0.11 U/mL and 0.13 U/mL respectively. The enzyme shows more affinity towards NADP+ than glucose-6-phosphate. The pKa value was found to be 10.41 indicating that the amino acid residue at active site might be lysine. The enzyme exhibited maximum catalytic activity at pH 8.2. The enzyme was found to be highly thermosensitive with gradual loss of activity above 30°C temperature.
文摘Background The present study aimed to investigate the detailed mode and specific sites for their binding as well as the functional relevance of this binding in the phenotypic proliferation of vascular smooth muscle cells(SMCs). Methods CREG knocked-down SMCs were employed to evaluate the biological activity of wtCREG and mCREG.Expressions of SMC differentiation markers SM myosin heavy chain(SM-MHC),SM-actin,heavy caldesmon and myocardin were determined by Western blotting using specific antibodies. Cellular growth of SMCs was assessed by bromide dewuridine (BrdU) incorporation and cell cycle analysis on fluorescence-activated cell sorting(FACS).A solid-phase binding assay was used to study the binding of CREG to extracellular domains of M6P/IGF2R.The cellular co-localization of the two recombinant CREGs with M6P/IGF2R was detected on SMC surface by immunoprecipitation and immunofluorescence analysis.Results The molecular weight of wtCREG was around 30 kD while that of the mCREG was~25 kD.Treatment of wtCREG with PNGase F reduced its molecular weight from~30 kD to~25 kD,whereas PNGase F treatment had no effect on the molecular weight of mCREG.Both wtCREG and mCREG proteins enhanced SMC differentiation,inhibited BrdU incorporation,and arrested cell cycle progression when added to the culture medium.In CREG knocked-down SMCs,the amount of CREG detected by immunoblotting in M6P/IGF2R immunoprecipitates was significantly reduced when compared to normal cells.Both recombinant CREGs co-immunoprecipitated with M6P/IGF2R, although slightly reduced amount of the mutant CREG was detected in M6P/IGF2R immunoprecipitates.Immunostaining revealed that His-tagged CREGs co-localized with IGF2R on the cell surface in a glycosylation-independent manner.In vitro binding assay showed that CREGs bound to M6P/ IGF2R extracellular domains 7-10 and 11-13 in a glycosylation -dependent and -independent manner,respectively.Further blocking experiments using soluble M6P/IGF2R fragments and M6P/IGF2R neutralizing antibody indicated that the biological activities of recombinant CREGs in SMC growth and the up-regulation of SMC differentiation markers were all abolished by treatment with the M6P/IGF2R neutralizing antibody. However,although the growth inhibitory effect of wtCREG was nearly abolished by D7-10 or D11-13,the effect of mCREG was only reversed by Dll-13,indicating that the binding to domains 11-13 is required for CREG to modulate the proliferation of SMCs.Conclusions These data suggest that solubleCREG proteins can exert their biological function via binding to the extracellular domains 7-10 and 11-13 of cell surface M6P/IGF2R in both a glycosylation-dependent and -independent manner.
基金Supported by West African Economic and Monetary Union(WAEMU)through the Programme d'appui et de developpement des centres d'excellence regionaux.Grant No.PACERⅡ
文摘Objective:To investigate 4 combinations of mutations responsible for glucose-6—phosphate dehydrogenase(G6PD) deficiency in a rural community of Burkina Faso,a malaria endemic country.Methods:Two hundred individuals in a rural community were genotyped for the mutations A376 G.G202A,A542 T,G680T and T968 C using TaqMan single nucleotide polymorphism assays and polymerase chain reaction followed by restriction fragment length polymorphism.Results:The prevalence of the G6 PD deficiency was 9.5%,in the study population.It was significantly higher in men compared to women(14.23%vs 6.0%,P=0.049).The 202A/376 G G6PD Awas the only deficient variant detected.Plasmodium falciparum asymptomatic parasitemia was significantly higher among the C6PD-non—deficient persons compared to the G6PD-deficient(P<0.001).The asymptomatic parasitemia was also significantly higher among G(SPI) nondeficient compared to C6PD—heterozygous females(P<0.001).Conclusions:This study showed that the G6 PD A- variant associated with protection against asymptomatic malaria in Burkina Faso is probably the most common deficient variant.
文摘The present study was designed to explore the possible mechanism of obesity associated metabolic syndrome. 150 subjects (120 men and 30 women) in the age-group of 17 - 26 years were studied. Body Mass Index and Waist-to-Hip Ratio were taken as a measure of generalized obesity and abdominal adiposity. The serum concentration of glucose-6-phosphate dehydrogenase increased with increasing levels of Body Mass Index and was found to be significant in obese subjects (Body Mass Index ≥ 30.0 kg/m2) and more so in the obese subjects with abdominal adiposity (p = 0.002) as compared to normal-weight subjects. Karl Pearson coefficient of correlation revealed a significant positive correlation of glucose-6-phosphate dehydrogenase with Body Mass Index (r = 0.499;p < 0.001) and malondialdehyde (a biomarker of oxidative stress) (r = 0.736;p < 0.001) but inverse correlation with adiponectin (r = -0.524;p < 0.001). Thus, we conclude that increased expression of glucose-6-phosphate dehydrogenase in obese subjects (more if it is associated with abdominal adiposity) might mediate the onset of obesity associated metabolic disorders by increasing oxidative stress.
文摘Objective: To investigate whether glucose-6-phosphate isomerase (G6PI) antigen and anti-G6PI antibodies could be applied for the clinical diagnostic markers of rheumatoid arthritis (RA) and its associations with RA activity states. Methods: The levels of G6PI antigens and anti-G6PI Abs in sera from 176 RA patients in different states, 35 non-RA patients and 100 healthy donors and in synovia fluids from 33 patients and 11 non-RA patients were measured by ELISA. Results: The sensitivity and specificity of G6PI antigens in the RA patients were 75.0% and 93.3%, respectively. The levels of serum G6PI antigens in 176 RA patients were significantly higher than non-RA patients and the health controls. Especially, there was a significant difference between the active phase and the inactive phase in G6PI antigens levels. The levels of G6PI antigens in synovia fluid were also significantly higher in RA groups than in non-RA patients. With the values of the anti-G6PI Abs in sera, there were no marked differences among RA, non-RA patients and health controls. Also, there was no significant difference between the active phase and the inactive phase in RA patients. However, there were no significant differences of G6PI and anti-G6PI between RA patients and health controls in synovial fluid. Conclusions: G6PI is highly correlated with the activity states of RA, and could be applied for a clinical biomarker with high sensitivity and specificity for the diagnosis of RA.
文摘Accumulated evidences have demonstrated that signal transducer and activator of transcription 3(STAT3)is a critical link between inflammation and cancer.Multiple studies have indicated that persistent activation of STAT3 in epithelial/tumor cells in inflammation-associated colorectal cancer(CRC)is associated with sphingosine-1-phosphate(S1P)receptor signaling.In inflammatory response whereby interleukin(IL)-6 production is abundant,STAT3-mediated pathways were found to promote the activation of sphingosine kinases(SphK1and SphK2)leading to the production of S1P.Reciprocally,S1P encourages the activation of STAT3 through a positive autocrine-loop signaling.The crosstalk between IL-6,STAT3 and sphingolipid regulated pathways may play an essential role in tumorigenesis and tumor progression in inflamed intestines.Therapeutics targeting both STAT3 and sphingolipid are therefore likely to contribute novel and more effective therapeutic strategies against inflammation-associated CRC.
文摘Trehalose plays an important role in protecting organisms from various stresses. Trehalose-6-phosphate synthase (TPS) is the key enzyme in trehalose synthesis, but in insects only a few TPS genes have been identified and their function has not been well characterized. To better understand the function of TPS in insects, a complete TPS complementary DNA (eDNA) clone was obtained from the fat body of the locust Locusta migratoria manilensis (GenBank accession number: EU131894). The full-length cDNA is 2 806 bp, including an open reading frame of 2 442 bp, which encodes an 813 amino acids protein with a calculated molecular weight of 91 976 Daltons and an isoelectric point of 6.14. The deduced amino acid sequence is highly similar to other published insect TPS and its C-terminal also has a region homologous to trehalose phosphate phsophatase (TPP). Semi-quantitative analysis indicated that the TPS transcript was expressed not only in fat body, but also in gut, hemolymph and leg muscle. These data may facilitate studies of TPS function in insects and improve our understanding of trehalose metabolism.
基金supported by the National Natural Science Foundation of China(No.31470653)the Natural Science Foundation of Guangdong Province(No.2015A030313416).
文摘Trehalose 6-phosphate synthase(TPS),an enzyme that hydrolyzes two glucose molecules to yield trchalose,plays a pivotal role in various physiological processes.In this study,we cloned the trehalose-6-phosphate synthase gene(HvTPS)and investigated its expression patterns in various tssues and d:velopmental stages in Heortia vitessoides Moore(Lepidoptera:Crambidac).HvTPS was highly expressed in the fat body and after pupation or before molting.We knocked down TPS in H.vitessoides by RNA interference and found that 3.0μg of dsHvTPS resulted in optimal interference at 24 h and 36 h post-injection and caused a sharp decline in the survival rate during the 5th instar larval-pupal stage and obviously abnormal or lethal phenotypes.Additionally.compared to the controls,TPS activity and trehalose contents were significantly lower and the glucose content was significantly higher 24 h or 36 h after injection with 3.0μg of dsHIvTPS.Furthermore,the silencing of HvTPS suppressed the cxpression of six key genecs in the chitin biosynthesis pathway and one key gene related to lipid catabolism.The expression levels of two genes associated with lipid biosynthesis were upregulated.These results strongly suggest that HvTPS is essential for the normal growth and development of H.vitessoides and provide a reference for further studies of the utility of key genes involved in chitin and lipid biosynthesis for controlling insect development.
基金supported by Natural Science Foundation of Chongqing(cstc202ljcyj-msxmX1054)the Fundamental Research Funds forthe Central Universities(XDJK2018C092).
文摘Trehalose is the principal sugar circulating in the hemolymph of insects,and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase(TPS)and trehalose-6-phosphate phosphatase(TPP).Insect TPS is a fused enzyme containing both TPS do-main and TPP domain.Thus,many insects do not possess TPP genes as TPSs have re-placed the function of TPPs.However,TPPs are widely distributed across the dipteran insects,while the roles they play remain largely unknown.In this study,3 TPP genes from notorious dipteran pest Bactrocera minax(BmiTPPB,BmiTPPCl,and BmiTPPC2)were identified and characterized.The different temporal-spatial expression patterns of 3 BmiTPPs implied that they exert different functions in B.minax.Recombinant BmiTPPs were heterologously expressed in yeast cells,and all purified proteins exhibited enzy-matic activities,despite the remarkable disparity in performance between BmiTPPB and BmiTPPCs.RNA interference revealed that all BmiTPPs were successfully downregulated after double-stranded RNA injection,leading to decreased trehalose content and increased glucose content.Also,suppression of BmiTPPs significantly affected expression of down-stream genes and increased the mortality and malformation rate.Collectively,these results indicated that all 3 BmiTPPs in B.minax are involved in trehalose synthesis and metamor-phosis.Thus,these genes could be evaluated as insecticidal targets for managing B.minax,andevenforotherdipteranpests.
基金The Special Clinical Fund of Gyeongsang National University Hospital
文摘AIM:To investigate the relationship between loss of heterozygosity (LOH) for mannose 6-phosphate/insulin- like growth factor 2 receptor (M6P/IGF2R) and the outcomes for primary HCC patients treated with partial hepatectomy. METHODS: The LOH for M6P/IGF2R in primary HCC patients was assessed using six different gene-specific nucleotide polymorphisms. The patients studied were enrolled to undergo partial hepatectomy. RESULTS: M6P/IGF2R was found to be polymorphic in 73.3% (22/30) of the patients, and of these patients, 50.0% (11/22) had tumors showing LOH in M6P/IGF2R. Loss of heterozygosity in M6P/IGF2R was associated with significant reductions in the two year overall survival rate (24.9% vs 65.5%; P = 0.04) and the disease-free survival rate (17.8% vs 59.3%; P = 0.03). CONCLUSION: These results show M6P/IGF2R LOH predicts poor clinical outcomes in surgically resected primary HCC patients.