The purpose of this work is to associate the channel encoder called ‘trellis-coded modulation with Ungerboeck-Gray mapping’ (TCM-UGM) to ‘space–time block code’ (STBC), in order to study its performance to correc...The purpose of this work is to associate the channel encoder called ‘trellis-coded modulation with Ungerboeck-Gray mapping’ (TCM-UGM) to ‘space–time block code’ (STBC), in order to study its performance to correct the transmission errors of a JPEG image. The performance of the proposed scheme is evaluated in senses of bit error rate (BER), frame error rate (FER) and peak signal-to-noise ratio (PSNR) of the reconstructed image. Compared to the association TCM/STBC for a throughput of 2 bits/s/Hz, TCM-UGM/STBC permits to obtain a PSNR gain up to 2 dB.展开更多
In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-acce...In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-access (MC-CDMA) system are studied. These schemes are considered by employing different detection techniques with various multi input multi output (MIMO) antenna diversity for different number of states in multi-path fading channel. The corresponding bit error rate (BER) is obtained using simulation for minimum mean-square error (MMSE), maximum-ratio combining (MRC), and equal-gain combining (EGC) receivers employing Viterbi decoder. The simulation results show that the STTC-STBC MC-CDMA system perform better compared to other schemes considered in this paper using MMSE detection and it is also observed that the performance can also be enhanced by increasing diversity using more transmitter and receiver antennas. However, this improvement in performance comes at the cost of increased computational complexity, which is calculated for different transmitting and receiving antennas.展开更多
文摘The purpose of this work is to associate the channel encoder called ‘trellis-coded modulation with Ungerboeck-Gray mapping’ (TCM-UGM) to ‘space–time block code’ (STBC), in order to study its performance to correct the transmission errors of a JPEG image. The performance of the proposed scheme is evaluated in senses of bit error rate (BER), frame error rate (FER) and peak signal-to-noise ratio (PSNR) of the reconstructed image. Compared to the association TCM/STBC for a throughput of 2 bits/s/Hz, TCM-UGM/STBC permits to obtain a PSNR gain up to 2 dB.
文摘In this paper, performance of space-time trellis-code (STTC), space-time block code (STBC), and space-time trellis-code concatenated with space-time block code (STTC-STBC) for multi-carrier code-division multiple-access (MC-CDMA) system are studied. These schemes are considered by employing different detection techniques with various multi input multi output (MIMO) antenna diversity for different number of states in multi-path fading channel. The corresponding bit error rate (BER) is obtained using simulation for minimum mean-square error (MMSE), maximum-ratio combining (MRC), and equal-gain combining (EGC) receivers employing Viterbi decoder. The simulation results show that the STTC-STBC MC-CDMA system perform better compared to other schemes considered in this paper using MMSE detection and it is also observed that the performance can also be enhanced by increasing diversity using more transmitter and receiver antennas. However, this improvement in performance comes at the cost of increased computational complexity, which is calculated for different transmitting and receiving antennas.