This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, ne...This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication.展开更多
A low on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) n-channel lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and its mechanism is investigated by simulation. The LDMOS has t...A low on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) n-channel lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and its mechanism is investigated by simulation. The LDMOS has two features: the integration of a planar gate and an extended trench gate (double gates (DGs)); and a buried P-layer in the N-drift region, which forms a triple reduced surface field (RESURF) (TR) structure. The triple RESURF not only modulates the electric field distribution, but also increases N-drift doping, resulting in a reduced specific on-resistance (Ron,sp) and an improved breakdown voltage (BV) in the off-state. The DGs form dual conduction channels and, moreover, the extended trench gate widens the vertical conduction area, both of which further reduce the Ron,sp. The BV and Ron,sp are 328 V and 8.8 mΩ·cm^2, respectively, for a DG TR metal-oxide semiconductor field-effect transistor (MOSFET) by simulation. Compared with a conventional SOI LDMOS, a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%. The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit, thereby saving the chip area and simplifying the fabrication processes.展开更多
A novel ultralow turnoff loss dual-gate silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed. The proposed SOI LIGBT features an extra trench gate inserted between the p-well an...A novel ultralow turnoff loss dual-gate silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed. The proposed SOI LIGBT features an extra trench gate inserted between the p-well and n-drift, and an n-type carrier stored (CS) layer beneath the p-well. In the on-state, the extra trench gate acts as a barrier, which increases the cartier density at the cathode side of n-drift region, resulting in a decrease of the on-state voltage drop (Von). In the off-state, due to the uniform carder distribution and the assisted depletion effect induced by the extra trench gate, large number of carriers can be removed at the initial turnoff process, contributing to a low turnoff loss (Eoff). Moreover, owing to the dual-gate field plates and CS layer, the carrier density beneath the p-well can greatly increase, which further improves the tradeoff between Eoff and Von. Simulation results show that Eoff of the proposed SOI LIGBT can decrease by 77% compared with the conventional trench gate SOI LIGBT at the same Von of 1.1 V.展开更多
In this paper,a novel trench gate gallium nitride(GaN)insulated gate bipolar transistor(GaN IGBT),in which the collector is divided into multiple regions to control the hole injection efficiency,is designed and theore...In this paper,a novel trench gate gallium nitride(GaN)insulated gate bipolar transistor(GaN IGBT),in which the collector is divided into multiple regions to control the hole injection efficiency,is designed and theoretically studied.The incorporation of a P+/P-multi-region alternating structure in the collector region mitigates hole injection within the collector region.When the device is in forward conduction,the conductivity modulation effect results in a reduced storage of carriers in the drift region.As a result,the number of carriers requiring extraction during device turn-off is minimized,leading to a faster turn-off speed.The results illustrate that the GaN IGBT with controlled hole injection efficiency(CEH GaN IGBT)exhibits markedly enhanced performance compared to conventional GaN IGBT,showing a remarkable 42.2%reduction in turn-off time and a notable 28.5%decrease in turn-off loss.展开更多
A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate(SG), and p-type pillar(ppillar) surrounded thick oxide shielding region(GSDP-TMOS) is investigated by Silvaco TCAD simulations....A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate(SG), and p-type pillar(ppillar) surrounded thick oxide shielding region(GSDP-TMOS) is investigated by Silvaco TCAD simulations. The sourceconnected SG region and p-pillar shielding region are introduced to form an effective two-level shielding, which reduces the specific gate–drain charge(Q_(gd,sp)) and the saturation current, thus reducing the switching loss and increasing the short-circuit capability. The thick oxide that surrounds a p-pillar shielding region efficiently protects gate oxide from being damaged by peaked electric field, thereby increasing the breakdown voltage(BV). Additionally, because of the high concentration in the n-type drift region, the electrons diffuse rapidly and the specific on-resistance(Ron,sp) becomes smaller.In the end, comparing with the bottom p~+ shielded trench MOSFET(GP-TMOS), the Baliga figure of merit(BFOM,BV~2/R_(on,sp)) is increased by 169.6%, and the high-frequency figure of merit(HF-FOM, R_(on,sp) × Q_(gd,sp)) is improved by310%, respectively.展开更多
An integrable silicon-on-insulator (SOl) power lateral MOSFET with a trench gate and a recessed drain (TGRD MOSFET) is proposed to reduce the on-resistance. Both of the trench gate extended to the buried oxide (...An integrable silicon-on-insulator (SOl) power lateral MOSFET with a trench gate and a recessed drain (TGRD MOSFET) is proposed to reduce the on-resistance. Both of the trench gate extended to the buried oxide (BOX) and the recessed drain reduce the specific on-resistance (Ron, sp) by widening the vertical conduction area and shortening the extra current path. The trench gate is extended as a field plate improves the electric field distribution. Breakdown voltage (BV) of 97 V and Ron, sp of 0.985 mf2-cm2 (l/os = 5 V) are obtained for a TGRD MOSFET with 6.5/xm half-cell pitch. Compared with the trench gate SOI MOSFET (TG MOSFET) and the conventional MOSFET, Ron' sp of the TGRD MOSFET decreases by 46% and 83% at the same BV, respectively. Compared with the SOI MOSFET with a trench gate and a trench drain (TGTD MOSFET), BV of the TGRD MOSFET increases by 37% at the same Ron,sp.展开更多
An improved trench gate super-junction insulated-gate bipolar transistor is presented. The improved structure contains two emitter regions. The first emitter region of the device works as the conventional structure,wh...An improved trench gate super-junction insulated-gate bipolar transistor is presented. The improved structure contains two emitter regions. The first emitter region of the device works as the conventional structure,which can absorb both the electron current and hole current. The second emitter on the top of the p-pillar acts as the hole current diverter, leading to an improved latch-up capability without sacrificing the off-state breakdown voltage(BV) and turn-off loss. The simulation shows that the latch-up limit of the SJ-IGBT increases from 15000 to 28300 A/cm^2 at VGE D10 V, the BV is 810 V, and the turn off loss is 6.5 m J/cm^2 at Von D1.2 V.展开更多
In this paper, a novel dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor (DGDI LTIGBT) structure, which features a double extended trench gate and a dielectric inserted in the drift ...In this paper, a novel dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor (DGDI LTIGBT) structure, which features a double extended trench gate and a dielectric inserted in the drift region, is proposed and discussed. The device can not only decrease the specific on-resistance Ron,sp , but also simultaneously improve the temperature performance. Simulation results show that the proposed LTIGBT achieves an ultra-low on-state voltage drop of 1.31 V at 700 A·cm-2 with a small half-cell pitch of 10.5 μm, a specific on-resistance R on,sp of 187 mΩ·mm2, and a high breakdown voltage of 250 V. The on-state voltage drop of the DGDI LTIGBT is 18% less than that of the DI LTIGBT and 30.3% less than that of the conventional LTIGBT. The proposed LTIGBT exhibits a good positive temperature coefficient for safety paralleling to handling larger currents and enhances the short-circuit capability while maintaining a low self-heating effect. Furthermore, it also shows a better tradeoff between the specific on-resistance and the turnoff loss, although it has a longer turnoff delay time.展开更多
A new ultralow gate–drain charge(Q_(GD)) 4 H-SiC trench MOSFET is presented and its mechanism is investigated by simulation. The novel MOSFET features double shielding structures(DS-MOS): one is the grounded split ga...A new ultralow gate–drain charge(Q_(GD)) 4 H-SiC trench MOSFET is presented and its mechanism is investigated by simulation. The novel MOSFET features double shielding structures(DS-MOS): one is the grounded split gate(SG), the other is the P+shielding region(PSR). Both the SG and the PSR reduce the coupling effect between the gate and the drain, and transform the most part of the gate–drain capacitance(C_(GD)) into the gate–source capacitance(C_(GS)) and drain–source capacitance(C_(DS)) in series.Thus the C_(GD) is reduced and the proposed DS-MOS obtains ultralow Q_(GD). Compared with the double-trench MOSFET(DT-MOS)and the conventional trench MOSFET(CT-MOS), the proposed DS-MOS decreases the Q_(GD) by 85% and 81%, respectively.Moreover, the figure of merit(FOM), defined as the product of specific on-resistance(R_(on, sp)) and Q_(GD)(R_(on, sp)Q_(GD)), is reduced by 84% and 81%, respectively.展开更多
A novel trench MOS barrier Schottky diode(TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS c...A novel trench MOS barrier Schottky diode(TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS can have 19.8% lower leakage current while maintaining the same breakdown voltage and forward turn-on voltage compared with the conventional regular trench TMBS.展开更多
An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and inve...An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and investigated by simulation. There are two key features in the proposed device: one is a U-shaped gate around the oxide trench, which extends from source to drain (UG LDMOS); the other is an N pillar and P pillar located in the trench sidewall. In the on-state, electrons accumulate along the U-shaped gate, providing a continuous low resistance current path from source to drain. The Ron,sp is thus greatly reduced and almost independent of the drift region doping concentration. In the off-state, the N and P pillars not only enhance the electric field (E-field) strength of the trench oxide, but also improve the E-field distribution in the drift region, leading to a significant improvement in the BV. The BV of 662 V and Ron,sp of 12.4 mΩ.cm2 are achieved for the proposed UG LDMOS. The BV is increased by 88.6% and the Ron,sp is reduced by 96.4%, compared with those of the conventional trench LDMOS (CT LDMOS), realizing the state-of-the-art trade-off between BV and Ron,sp.展开更多
An ultralow specific on-resistance (Ron,sp) trench metal-oxide-semiconductor field effect transistor (MOSFET) with an improved off-state breakdown voltage (BV) is proposed. It features a U-shaped gate around the...An ultralow specific on-resistance (Ron,sp) trench metal-oxide-semiconductor field effect transistor (MOSFET) with an improved off-state breakdown voltage (BV) is proposed. It features a U-shaped gate around the drift region and an oxide trench inserted in the drift region (UG MOSFET). In the on-state, the U-shaped gate induces a high density electron accumulation layer along its sidewall, which provides a low-resistance current path from the source to the drain, realizing an ultralow Ron,sp. The value of Ron,sp is almost independent of the drift doping concentration, and thus the UG MOSFET breaks through the contradiction relationship between R p and the off-state BV. Moreover, the oxide trench folds the drift region, enabling the UG MOSFET to support a high BV with a shortened cell pitch. The UG MOSFET achieves an Ron,sp of 2 mΩ·cm^2 and an improved BV of 216 V, superior to the best existing state-of-the-art transistors at the same BV level展开更多
Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bip...Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bipolar transistor(IGBT) technology and the fifth-generation trench gate IGBT technology, have been developed, realizing a great-leap forward technological development for the manufacturing of high-voltage IGBT from 6-inch to 8-inch. The 1600 A/1.7 kV and 1500 A/3.3 kV IGBT modules have been successfully fabricated, qualified, and applied in rail transportation traction system.展开更多
An optimized silicon carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)structure with side-wall p-type pillar(p-pillar)and wrap n-type pillar(n-pillar)in the n-drain was investigated by utili...An optimized silicon carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)structure with side-wall p-type pillar(p-pillar)and wrap n-type pillar(n-pillar)in the n-drain was investigated by utilizing Silvaco TCAD simulations.The optimized structure mainly includes a p+buried region,a light n-type current spreading layer(CSL),a p-type pillar region,and a wrapping n-type pillar region at the right and bottom of the p-pillar.The improved structure is named as SNPPT-MOS.The side-wall p-pillar region could better relieve the high electric field around the p+shielding region and the gate oxide in the off-state mode.The wrapping n-pillar region and CSL can also effectively reduce the specific on-resistance(Ron,sp).As a result,the SNPPT-MOS structure exhibits that the figure of merit(Fo M)related to the breakdown voltage(V_(BR))and Ron,sp(V_(BR)^2R_(on,sp))of the SNPPT-MOS is improved by 44.5%,in comparison to that of the conventional trench gate SJ MOSFET(full-SJ-MOS).In addition,the SNPPT-MOS structure achieves a much fasterwitching speed than the full-SJ-MOS,and the result indicates an appreciable reduction in the switching energy loss.展开更多
An ultra-low specific on-resistance trench gate vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench(HK TG VDMOS) is proposed in this paper.The HK TG VDMOS features a hi...An ultra-low specific on-resistance trench gate vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench(HK TG VDMOS) is proposed in this paper.The HK TG VDMOS features a high-k(HK) trench below the trench gate.Firstly,the extended HK trench not only causes an assistant depletion of the n-drift region,but also optimizes the electric field,which therefore reduces Ron,sp and increases the breakdown voltage(BV).Secondly,the extended HK trench weakens the sensitivity of BV to the n-drift doping concentration.Thirdly,compared with the superjunction(SJ) vertical double-diffused metal-oxide semiconductor(VDMOS),the new device is simplified in fabrication by etching and filling the extended trench.The HK TG VDMOS with BV = 172 V and Ron,sp = 0.85 mΩ·cm2 is obtained by simulation;its Ron,sp is reduced by 67% and 40% and its BV is increased by about 15% and 5%,in comparison with those of the conventional trench gate VDMOS(TG VDMOS) and conventional superjunction trench gate VDMOS(SJ TG CDMOS).展开更多
A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The adv...A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The advantage of the proposed structure is given by comprehensive study of the mechanism of the local semi-super-junction structure at the bottom of the trench MOSFET.In particular,the influence of the bias condition of the p-pillar at the bottom of the trench on the static and dynamic performances of the device is compared and revealed.The on-resistance of SS-UMOS with grounded(G)and ungrounded(NG)p-pillar is reduced by 52%(G)and 71%(NG)compared to CT-UMOS,respectively.Additionally,gate ox-ide in the GSS-UMOS is fully protected by the p-shield layer as well as semi-super-junction structure under the trench and p-base regions.Thus,a reduced electric-field of 2 MV/cm can be achieved at the corner of the p-shield layer.However,the quasi-intrinsic protective layer cannot be formed in NGSS-UMOS due to the charge storage effect in the floating p-pillar,resulting in a large electric field of 2.7 MV/cm at the gate oxide layer.Moreover,the total switching loss of GSS-UMOS is 1.95 mJ/cm2 and is reduced by 18%compared with CT-UMOS.On the contrary,the NGSS-UMOS has the slowest overall switching speed due to the weakened shielding effect of the p-pillar and the largest gate-to-drain capacitance among the three.The proposed GSS-UMOS plays an important role in high-voltage and high-frequency applications,and will provide a valuable idea for device design and circuit applications.展开更多
基金supported by the Doctor Scientific Research Start-up Foundation of Xi'an University of Technology of China
文摘This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 609 76060)the National Key Laboratory of Analogue Integrated Circuit (Grant No. 9140C090304110C0905)
文摘A low on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) n-channel lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and its mechanism is investigated by simulation. The LDMOS has two features: the integration of a planar gate and an extended trench gate (double gates (DGs)); and a buried P-layer in the N-drift region, which forms a triple reduced surface field (RESURF) (TR) structure. The triple RESURF not only modulates the electric field distribution, but also increases N-drift doping, resulting in a reduced specific on-resistance (Ron,sp) and an improved breakdown voltage (BV) in the off-state. The DGs form dual conduction channels and, moreover, the extended trench gate widens the vertical conduction area, both of which further reduce the Ron,sp. The BV and Ron,sp are 328 V and 8.8 mΩ·cm^2, respectively, for a DG TR metal-oxide semiconductor field-effect transistor (MOSFET) by simulation. Compared with a conventional SOI LDMOS, a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%. The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit, thereby saving the chip area and simplifying the fabrication processes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376080 and 61674027)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2014A030313736 and 2016A030311022)
文摘A novel ultralow turnoff loss dual-gate silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed. The proposed SOI LIGBT features an extra trench gate inserted between the p-well and n-drift, and an n-type carrier stored (CS) layer beneath the p-well. In the on-state, the extra trench gate acts as a barrier, which increases the cartier density at the cathode side of n-drift region, resulting in a decrease of the on-state voltage drop (Von). In the off-state, due to the uniform carder distribution and the assisted depletion effect induced by the extra trench gate, large number of carriers can be removed at the initial turnoff process, contributing to a low turnoff loss (Eoff). Moreover, owing to the dual-gate field plates and CS layer, the carrier density beneath the p-well can greatly increase, which further improves the tradeoff between Eoff and Von. Simulation results show that Eoff of the proposed SOI LIGBT can decrease by 77% compared with the conventional trench gate SOI LIGBT at the same Von of 1.1 V.
基金the General Program of Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0475)the Doctoral Research Start-up Fund of Chongqing University of Posts and Telecommunications(A2023-70)。
文摘In this paper,a novel trench gate gallium nitride(GaN)insulated gate bipolar transistor(GaN IGBT),in which the collector is divided into multiple regions to control the hole injection efficiency,is designed and theoretically studied.The incorporation of a P+/P-multi-region alternating structure in the collector region mitigates hole injection within the collector region.When the device is in forward conduction,the conductivity modulation effect results in a reduced storage of carriers in the drift region.As a result,the number of carriers requiring extraction during device turn-off is minimized,leading to a faster turn-off speed.The results illustrate that the GaN IGBT with controlled hole injection efficiency(CEH GaN IGBT)exhibits markedly enhanced performance compared to conventional GaN IGBT,showing a remarkable 42.2%reduction in turn-off time and a notable 28.5%decrease in turn-off loss.
基金the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045)the National Research and Development Program for Major Research Instruments of China (Grant No. 62027814)the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212BAB214047)。
文摘A split-gate SiC trench gate MOSFET with stepped thick oxide, source-connected split-gate(SG), and p-type pillar(ppillar) surrounded thick oxide shielding region(GSDP-TMOS) is investigated by Silvaco TCAD simulations. The sourceconnected SG region and p-pillar shielding region are introduced to form an effective two-level shielding, which reduces the specific gate–drain charge(Q_(gd,sp)) and the saturation current, thus reducing the switching loss and increasing the short-circuit capability. The thick oxide that surrounds a p-pillar shielding region efficiently protects gate oxide from being damaged by peaked electric field, thereby increasing the breakdown voltage(BV). Additionally, because of the high concentration in the n-type drift region, the electrons diffuse rapidly and the specific on-resistance(Ron,sp) becomes smaller.In the end, comparing with the bottom p~+ shielded trench MOSFET(GP-TMOS), the Baliga figure of merit(BFOM,BV~2/R_(on,sp)) is increased by 169.6%, and the high-frequency figure of merit(HF-FOM, R_(on,sp) × Q_(gd,sp)) is improved by310%, respectively.
基金supported by the National Natural Science Foundation of China(Nos.60976060,61176069)the National Key Laboratory of AnalogIntegrated Circuit(NLAIC),China(No.9140C090304110C0905)the State Key Laboratory of Electronic Thin Films and Integrated Devices,China(No.CXJJ201004)
文摘An integrable silicon-on-insulator (SOl) power lateral MOSFET with a trench gate and a recessed drain (TGRD MOSFET) is proposed to reduce the on-resistance. Both of the trench gate extended to the buried oxide (BOX) and the recessed drain reduce the specific on-resistance (Ron, sp) by widening the vertical conduction area and shortening the extra current path. The trench gate is extended as a field plate improves the electric field distribution. Breakdown voltage (BV) of 97 V and Ron, sp of 0.985 mf2-cm2 (l/os = 5 V) are obtained for a TGRD MOSFET with 6.5/xm half-cell pitch. Compared with the trench gate SOI MOSFET (TG MOSFET) and the conventional MOSFET, Ron' sp of the TGRD MOSFET decreases by 46% and 83% at the same BV, respectively. Compared with the SOI MOSFET with a trench gate and a trench drain (TGTD MOSFET), BV of the TGRD MOSFET increases by 37% at the same Ron,sp.
基金Project supported by the National Natural Science Foundation of China(No.61204083)the Natural Science Foundation of the Jiangsu Province of China(Nos.BK2012204,BY2011146)the Scientific Research Guidance Foundation of Southeast University Wuxi Branch Campus
文摘An improved trench gate super-junction insulated-gate bipolar transistor is presented. The improved structure contains two emitter regions. The first emitter region of the device works as the conventional structure,which can absorb both the electron current and hole current. The second emitter on the top of the p-pillar acts as the hole current diverter, leading to an improved latch-up capability without sacrificing the off-state breakdown voltage(BV) and turn-off loss. The simulation shows that the latch-up limit of the SJ-IGBT increases from 15000 to 28300 A/cm^2 at VGE D10 V, the BV is 810 V, and the turn off loss is 6.5 m J/cm^2 at Von D1.2 V.
基金the Major Program of the National Natural Science Foundation of China(Grant No.2009ZX02305-006)the National Natural Science Foundation of China(Grant No.61076082)
文摘In this paper, a novel dual-gate and dielectric-inserted lateral trench insulated gate bipolar transistor (DGDI LTIGBT) structure, which features a double extended trench gate and a dielectric inserted in the drift region, is proposed and discussed. The device can not only decrease the specific on-resistance Ron,sp , but also simultaneously improve the temperature performance. Simulation results show that the proposed LTIGBT achieves an ultra-low on-state voltage drop of 1.31 V at 700 A·cm-2 with a small half-cell pitch of 10.5 μm, a specific on-resistance R on,sp of 187 mΩ·mm2, and a high breakdown voltage of 250 V. The on-state voltage drop of the DGDI LTIGBT is 18% less than that of the DI LTIGBT and 30.3% less than that of the conventional LTIGBT. The proposed LTIGBT exhibits a good positive temperature coefficient for safety paralleling to handling larger currents and enhances the short-circuit capability while maintaining a low self-heating effect. Furthermore, it also shows a better tradeoff between the specific on-resistance and the turnoff loss, although it has a longer turnoff delay time.
基金supported by the National Key Research and Development Program of China(No.2016YFB0400502)
文摘A new ultralow gate–drain charge(Q_(GD)) 4 H-SiC trench MOSFET is presented and its mechanism is investigated by simulation. The novel MOSFET features double shielding structures(DS-MOS): one is the grounded split gate(SG), the other is the P+shielding region(PSR). Both the SG and the PSR reduce the coupling effect between the gate and the drain, and transform the most part of the gate–drain capacitance(C_(GD)) into the gate–source capacitance(C_(GS)) and drain–source capacitance(C_(DS)) in series.Thus the C_(GD) is reduced and the proposed DS-MOS obtains ultralow Q_(GD). Compared with the double-trench MOSFET(DT-MOS)and the conventional trench MOSFET(CT-MOS), the proposed DS-MOS decreases the Q_(GD) by 85% and 81%, respectively.Moreover, the figure of merit(FOM), defined as the product of specific on-resistance(R_(on, sp)) and Q_(GD)(R_(on, sp)Q_(GD)), is reduced by 84% and 81%, respectively.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00607)the National Natural Science Foundation of China(Grant Nos.61106089 and 61376097)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR14F040001)
文摘A novel trench MOS barrier Schottky diode(TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS can have 19.8% lower leakage current while maintaining the same breakdown voltage and forward turn-on voltage compared with the conventional regular trench TMBS.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176069 and 61376079)the Program for New Century Excellent Talents at the University of Ministry of Education of China(Grant No.NCET-11-0062)
文摘An ultra-low specific on-resistance (Ron,sp) oxide trench-type silicon-on-insulator (SOI) lateral double-diffusion metal-oxide semiconductor (LDMOS) with an enhanced breakdown voltage (BV) is proposed and investigated by simulation. There are two key features in the proposed device: one is a U-shaped gate around the oxide trench, which extends from source to drain (UG LDMOS); the other is an N pillar and P pillar located in the trench sidewall. In the on-state, electrons accumulate along the U-shaped gate, providing a continuous low resistance current path from source to drain. The Ron,sp is thus greatly reduced and almost independent of the drift region doping concentration. In the off-state, the N and P pillars not only enhance the electric field (E-field) strength of the trench oxide, but also improve the E-field distribution in the drift region, leading to a significant improvement in the BV. The BV of 662 V and Ron,sp of 12.4 mΩ.cm2 are achieved for the proposed UG LDMOS. The BV is increased by 88.6% and the Ron,sp is reduced by 96.4%, compared with those of the conventional trench LDMOS (CT LDMOS), realizing the state-of-the-art trade-off between BV and Ron,sp.
基金Supported by the National Natural Science Foundation of China under Grant No 61376079the Fundamental Research Funds for the Central Universities under Grant No ZYGX2013J043
文摘An ultralow specific on-resistance (Ron,sp) trench metal-oxide-semiconductor field effect transistor (MOSFET) with an improved off-state breakdown voltage (BV) is proposed. It features a U-shaped gate around the drift region and an oxide trench inserted in the drift region (UG MOSFET). In the on-state, the U-shaped gate induces a high density electron accumulation layer along its sidewall, which provides a low-resistance current path from the source to the drain, realizing an ultralow Ron,sp. The value of Ron,sp is almost independent of the drift doping concentration, and thus the UG MOSFET breaks through the contradiction relationship between R p and the off-state BV. Moreover, the oxide trench folds the drift region, enabling the UG MOSFET to support a high BV with a shortened cell pitch. The UG MOSFET achieves an Ron,sp of 2 mΩ·cm^2 and an improved BV of 216 V, superior to the best existing state-of-the-art transistors at the same BV level
文摘Based on the construction of the 8-inch fabricat ion line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor(DMOS+) insulated-gate bipolar transistor(IGBT) technology and the fifth-generation trench gate IGBT technology, have been developed, realizing a great-leap forward technological development for the manufacturing of high-voltage IGBT from 6-inch to 8-inch. The 1600 A/1.7 kV and 1500 A/3.3 kV IGBT modules have been successfully fabricated, qualified, and applied in rail transportation traction system.
基金the National Natural Science Foundation of China(Grant Nos.61774052 and 61904045)the National Natural Science Foundation of Jiangxi Province of China(Grant No.20202BABL201021)the Education Department of Jiangxi Province of China for Youth Foundation(Grant No.GJJ191154)。
文摘An optimized silicon carbide(SiC)trench metal-oxide-semiconductor field-effect transistor(MOSFET)structure with side-wall p-type pillar(p-pillar)and wrap n-type pillar(n-pillar)in the n-drain was investigated by utilizing Silvaco TCAD simulations.The optimized structure mainly includes a p+buried region,a light n-type current spreading layer(CSL),a p-type pillar region,and a wrapping n-type pillar region at the right and bottom of the p-pillar.The improved structure is named as SNPPT-MOS.The side-wall p-pillar region could better relieve the high electric field around the p+shielding region and the gate oxide in the off-state mode.The wrapping n-pillar region and CSL can also effectively reduce the specific on-resistance(Ron,sp).As a result,the SNPPT-MOS structure exhibits that the figure of merit(Fo M)related to the breakdown voltage(V_(BR))and Ron,sp(V_(BR)^2R_(on,sp))of the SNPPT-MOS is improved by 44.5%,in comparison to that of the conventional trench gate SJ MOSFET(full-SJ-MOS).In addition,the SNPPT-MOS structure achieves a much fasterwitching speed than the full-SJ-MOS,and the result indicates an appreciable reduction in the switching energy loss.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 61176069 )the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0062)
文摘An ultra-low specific on-resistance trench gate vertical double-diffused metal-oxide semiconductor with a high-k dielectric-filled extended trench(HK TG VDMOS) is proposed in this paper.The HK TG VDMOS features a high-k(HK) trench below the trench gate.Firstly,the extended HK trench not only causes an assistant depletion of the n-drift region,but also optimizes the electric field,which therefore reduces Ron,sp and increases the breakdown voltage(BV).Secondly,the extended HK trench weakens the sensitivity of BV to the n-drift doping concentration.Thirdly,compared with the superjunction(SJ) vertical double-diffused metal-oxide semiconductor(VDMOS),the new device is simplified in fabrication by etching and filling the extended trench.The HK TG VDMOS with BV = 172 V and Ron,sp = 0.85 mΩ·cm2 is obtained by simulation;its Ron,sp is reduced by 67% and 40% and its BV is increased by about 15% and 5%,in comparison with those of the conventional trench gate VDMOS(TG VDMOS) and conventional superjunction trench gate VDMOS(SJ TG CDMOS).
基金supported by the National Natural Science Foundation of China(Grant No.62104222)the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars(Grant No.2020J06002)+3 种基金the Science and Technology Project of Fujian Province of China(Grant No.2020I0001)the Science and Technology Key Projects of Xiamen(Grant No.3502ZCQ20191001)Shenzhen Science and Technology Program(Grant No.JSGG20201102-155800003)Jiangxi Provincial Natural Science Foundation(Grant No.20212ACB212005).
文摘A 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor(UMOSFET)with semi-super-junction shiel-ded structure(SS-UMOS)is proposed and compared with conventional trench MOSFET(CT-UMOS)in this work.The advantage of the proposed structure is given by comprehensive study of the mechanism of the local semi-super-junction structure at the bottom of the trench MOSFET.In particular,the influence of the bias condition of the p-pillar at the bottom of the trench on the static and dynamic performances of the device is compared and revealed.The on-resistance of SS-UMOS with grounded(G)and ungrounded(NG)p-pillar is reduced by 52%(G)and 71%(NG)compared to CT-UMOS,respectively.Additionally,gate ox-ide in the GSS-UMOS is fully protected by the p-shield layer as well as semi-super-junction structure under the trench and p-base regions.Thus,a reduced electric-field of 2 MV/cm can be achieved at the corner of the p-shield layer.However,the quasi-intrinsic protective layer cannot be formed in NGSS-UMOS due to the charge storage effect in the floating p-pillar,resulting in a large electric field of 2.7 MV/cm at the gate oxide layer.Moreover,the total switching loss of GSS-UMOS is 1.95 mJ/cm2 and is reduced by 18%compared with CT-UMOS.On the contrary,the NGSS-UMOS has the slowest overall switching speed due to the weakened shielding effect of the p-pillar and the largest gate-to-drain capacitance among the three.The proposed GSS-UMOS plays an important role in high-voltage and high-frequency applications,and will provide a valuable idea for device design and circuit applications.