Heterogeneous catalyst aluminium oxide(acidic) is found to be an effective catalyst for the solvent-free condensation reaction of indole with aldehydes in microwave irradiation with shorter reaction time and higher yi...Heterogeneous catalyst aluminium oxide(acidic) is found to be an effective catalyst for the solvent-free condensation reaction of indole with aldehydes in microwave irradiation with shorter reaction time and higher yields.展开更多
Benzyltriphenylphosphonium tribromide(BTPTB) has been applied as an efficient catalyst for the preparation of bis(indolyl)-methanes (BIMs) via electrophilic substitution of indoles with aldehydes in the absence ...Benzyltriphenylphosphonium tribromide(BTPTB) has been applied as an efficient catalyst for the preparation of bis(indolyl)-methanes (BIMs) via electrophilic substitution of indoles with aldehydes in the absence of solvent.展开更多
A simple, efficient, and environment benign route was developed for the preparation of bis-(indolyl)methanes and 14-aryl-14H- dibenzo[aj]xanthenes from condensation of various aromatic aldehydes or ketones with indo...A simple, efficient, and environment benign route was developed for the preparation of bis-(indolyl)methanes and 14-aryl-14H- dibenzo[aj]xanthenes from condensation of various aromatic aldehydes or ketones with indole, and 2-naphthol, respectively, using oxalic acid catalyst in aqueous medium. Use of cheap and easily available catalyst, better yields and simple reaction protocol are the advantages of the present method.展开更多
Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridi...Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridinium tetrafluoroborate ([Bpy]BF4) to afford the corresponding bi(indolyl)methanes in excellent yields. The notable advantages of this protocol in terms of low cost of catalyst and ionic liquid, mild conditions, simple operation, short reaction time, high yields and recycling of the ionic liquid.展开更多
n-Dodecylbenzene sulfonic acid (DBSA) as a novel, biodegradable, and efficient Br?nsted acid catalyst used for the reaction of indoles/4-hydroxy coumarin with aldehydes to obtain a bis(indolyl)methanes/bis(4-hydroxyco...n-Dodecylbenzene sulfonic acid (DBSA) as a novel, biodegradable, and efficient Br?nsted acid catalyst used for the reaction of indoles/4-hydroxy coumarin with aldehydes to obtain a bis(indolyl)methanes/bis(4-hydroxycoumarin-3-yl)methanes, respectively. The catalyst exhibited remarkable activity, and tolerated a wide variety of functional groups providing the desired bis(indolyl)methanes and bis(4-hydroxycoumarin-3-yl)methanes in good to excellent yield (70%-96%) in water.展开更多
In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)cata...In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization.展开更多
Schiff base-Cu(II) complex is found to be an effective catalyst for the condensation reaction of indole with aldehydes using ethanol as the solvent. The characterization of the catalysts was carried out using XRD an...Schiff base-Cu(II) complex is found to be an effective catalyst for the condensation reaction of indole with aldehydes using ethanol as the solvent. The characterization of the catalysts was carried out using XRD and FT-IR.展开更多
An environmentally friendly synthesis method for bis(indolyl)methanes has been developed in the presence of sodium lauryl ether sulfate(SLES),electrophilic substitution reactions of indoles with aldehydes were acc...An environmentally friendly synthesis method for bis(indolyl)methanes has been developed in the presence of sodium lauryl ether sulfate(SLES),electrophilic substitution reactions of indoles with aldehydes were accomplished in water as solvent at room temperature without any Bronested or Lewis acid catalysts.展开更多
Practical BF3.Et20 catalyzed reactions between indoles and a series of carbonyl compounds at room temperature are described, which afford bis(indolyl)methanes with isolated yields up to 96%,
Sodium tetrafluoroborate (NaBF4) was found to catalyze the electrophilic substitution reactions of indoles with aldehydes and ketones under solvent-free conditions to afford the corresponding bis(indolyl)methanes ...Sodium tetrafluoroborate (NaBF4) was found to catalyze the electrophilic substitution reactions of indoles with aldehydes and ketones under solvent-free conditions to afford the corresponding bis(indolyl)methanes in high yields.展开更多
An operationally simple and green method for the synthesis of a wide range of bis(indolyl)methanes,and N,N'-alkylidene bisamides under mild conditions,with excellent yields using Silzic,has been developed.This impr...An operationally simple and green method for the synthesis of a wide range of bis(indolyl)methanes,and N,N'-alkylidene bisamides under mild conditions,with excellent yields using Silzic,has been developed.This improved method furnishes in good yields bis(indolyl)methanes derivatives starting from indole and aldehydes,or ketones,and N,N'-alkylidene bisamides derivatives starting from acetamide and aldehydes.The catalytic system was reused up to three times with the same efficiency.展开更多
A series of bioactive bis(indolyl)methanes are synthesized by one-pot green reaction of indole with various substituted aldehydes by microwave irradiation under solvent free conditions. The antibacterial activity ag...A series of bioactive bis(indolyl)methanes are synthesized by one-pot green reaction of indole with various substituted aldehydes by microwave irradiation under solvent free conditions. The antibacterial activity against Staphylococcus aureus and anti-inflammatory activity of the synthesized bis(indolyl)-methanes are evaluated in vitro and compared to standard drugs tetracycline and diclofenac,respectively. The majority of the compounds showed good antibacterial and anti-inflammatory activity.Interestingly, compounds 3j, 3i, 3k and 3g exhibited much higher anti-inflammatory activity than the standard diclofenac drug and thus qualify for clinical trials to be used as an anti-inflammatory compound.展开更多
A simple and practical approach for the preparation of unsymmetric bis(indolyl)methanes (BIMs) was realized by Lewis acid InBr3-catalyzed Friedel-Crafts reaction of indoles with 3-indolyl-substituted phthalides in...A simple and practical approach for the preparation of unsymmetric bis(indolyl)methanes (BIMs) was realized by Lewis acid InBr3-catalyzed Friedel-Crafts reaction of indoles with 3-indolyl-substituted phthalides in water.展开更多
文摘Heterogeneous catalyst aluminium oxide(acidic) is found to be an effective catalyst for the solvent-free condensation reaction of indole with aldehydes in microwave irradiation with shorter reaction time and higher yields.
文摘Benzyltriphenylphosphonium tribromide(BTPTB) has been applied as an efficient catalyst for the preparation of bis(indolyl)-methanes (BIMs) via electrophilic substitution of indoles with aldehydes in the absence of solvent.
文摘A simple, efficient, and environment benign route was developed for the preparation of bis-(indolyl)methanes and 14-aryl-14H- dibenzo[aj]xanthenes from condensation of various aromatic aldehydes or ketones with indole, and 2-naphthol, respectively, using oxalic acid catalyst in aqueous medium. Use of cheap and easily available catalyst, better yields and simple reaction protocol are the advantages of the present method.
基金The project was supported by the National Natural Science Foundation of China (No. 20272018) the Guangdong Natural Science Foundation (No. 04010458, 021166).
文摘Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridinium tetrafluoroborate ([Bpy]BF4) to afford the corresponding bi(indolyl)methanes in excellent yields. The notable advantages of this protocol in terms of low cost of catalyst and ionic liquid, mild conditions, simple operation, short reaction time, high yields and recycling of the ionic liquid.
文摘n-Dodecylbenzene sulfonic acid (DBSA) as a novel, biodegradable, and efficient Br?nsted acid catalyst used for the reaction of indoles/4-hydroxy coumarin with aldehydes to obtain a bis(indolyl)methanes/bis(4-hydroxycoumarin-3-yl)methanes, respectively. The catalyst exhibited remarkable activity, and tolerated a wide variety of functional groups providing the desired bis(indolyl)methanes and bis(4-hydroxycoumarin-3-yl)methanes in good to excellent yield (70%-96%) in water.
文摘In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization.
基金support from the National Natural Science Foundation of China(Nos.20962018, 20862015,20762009 and 20562011)
文摘Schiff base-Cu(II) complex is found to be an effective catalyst for the condensation reaction of indole with aldehydes using ethanol as the solvent. The characterization of the catalysts was carried out using XRD and FT-IR.
基金Semnan University research councils for financial support of this work
文摘An environmentally friendly synthesis method for bis(indolyl)methanes has been developed in the presence of sodium lauryl ether sulfate(SLES),electrophilic substitution reactions of indoles with aldehydes were accomplished in water as solvent at room temperature without any Bronested or Lewis acid catalysts.
基金fundings from the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, Partenariats Hubert Curien Xu Guangqi 2012 (No. 27967RE)Fundamental Research Funds for the Central Universities (Nos. CDJRC10220004 and CDJZR11220005)Natural Science Foundation Project of CQ CSTC (Nos. 2010BB5064 and cstc2013jcyjA0217) for financial support
文摘Practical BF3.Et20 catalyzed reactions between indoles and a series of carbonyl compounds at room temperature are described, which afford bis(indolyl)methanes with isolated yields up to 96%,
文摘Sodium tetrafluoroborate (NaBF4) was found to catalyze the electrophilic substitution reactions of indoles with aldehydes and ketones under solvent-free conditions to afford the corresponding bis(indolyl)methanes in high yields.
基金Financial support by National Research Center(Cairo,Egypt)
文摘An operationally simple and green method for the synthesis of a wide range of bis(indolyl)methanes,and N,N'-alkylidene bisamides under mild conditions,with excellent yields using Silzic,has been developed.This improved method furnishes in good yields bis(indolyl)methanes derivatives starting from indole and aldehydes,or ketones,and N,N'-alkylidene bisamides derivatives starting from acetamide and aldehydes.The catalytic system was reused up to three times with the same efficiency.
基金financial assistance through a Major Research Project (F. No. 42281/2013 (SR), Dated: 12-03-2013)
文摘A series of bioactive bis(indolyl)methanes are synthesized by one-pot green reaction of indole with various substituted aldehydes by microwave irradiation under solvent free conditions. The antibacterial activity against Staphylococcus aureus and anti-inflammatory activity of the synthesized bis(indolyl)-methanes are evaluated in vitro and compared to standard drugs tetracycline and diclofenac,respectively. The majority of the compounds showed good antibacterial and anti-inflammatory activity.Interestingly, compounds 3j, 3i, 3k and 3g exhibited much higher anti-inflammatory activity than the standard diclofenac drug and thus qualify for clinical trials to be used as an anti-inflammatory compound.
基金Financial support from the National Natural Science Foundation of China (Nos. 21072031 and 20802009), and the Shanghai Municipal Committee of Science and Technology (No. 10ZR1404100) is greatly acknowl- edged.
文摘A simple and practical approach for the preparation of unsymmetric bis(indolyl)methanes (BIMs) was realized by Lewis acid InBr3-catalyzed Friedel-Crafts reaction of indoles with 3-indolyl-substituted phthalides in water.