We designed and constructed a novel,compact tri-band monopole antenna for intelligent devices.Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed ...We designed and constructed a novel,compact tri-band monopole antenna for intelligent devices.Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed by a coplanar waveguide.The resonance frequency of each band can be controlled by varying the length of the corresponding stub.Three bands,at 2.4(2.37-2.51),3.5(3.34-3.71),and 5.5(4.6-6.4)GHz,were easily obtained using three stubs of different lengths.For miniaturization,a portion of the longest stub(at 2.4 GHz)was printed on the opposite side of the substrate,and connected to the main stub via a shorting pin.To validate the concept,the antenna was fabricated on a low-cost 1.6-mm-thick FR-4 substrate with dimensions of 20×15×1.6 mm^(3).The antenna exhibited a moderate average gain of 2.9 dBi with an omnidirectional radiations over the bandwidths required for RFID,Bluetooth,ISM,WiMAX,andWLAN-band applications.These features make the antenna suitable for compact smart devices.展开更多
<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to th...<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to the non-radiating edges of a radiating element is presented. The experimental results show that two element slot-loaded gap-coupled microstrip array antenna gives a ?10 dB return loss band-width for three bands. The design specifications, radiation patterns and gain of the proposed antennas are presented and described. </div>展开更多
This paper presents the tri-band slot loaded patch antenna for mobile communication. The antenna consists of parallel slots loaded circular disk with defected ground structure antenna (DGS). The antenna without DGS, a...This paper presents the tri-band slot loaded patch antenna for mobile communication. The antenna consists of parallel slots loaded circular disk with defected ground structure antenna (DGS). The antenna without DGS, acts like wide band antenna and bandwidth is 34.45% (3.47 - 4.92 GHz) with maximum gain of 4.97 dBi, which can be used in WiMax application. This structure has the following advantages: 1) co-axial feeding technique, which is very simple as compared to other feeding technique, 2) simple and cost effective and 3) it is more efficient than the antenna without DGS. This antenna has been analyzed using IE3D simulation software.展开更多
A novel tri-band bandpass filter (BPF) is proposed by using cross-coupled stepped impedance resonators (SIRs), which can operate at 2.4 GHz, 3.5 GHz and 5.25 GHz respectively. In engineering application, it is sui...A novel tri-band bandpass filter (BPF) is proposed by using cross-coupled stepped impedance resonators (SIRs), which can operate at 2.4 GHz, 3.5 GHz and 5.25 GHz respectively. In engineering application, it is suitable for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX). In addition, the passband of this filter can be easily controlled by changing the electrical parameters of the resonators. So it is helpful to the selection of passband in engineering applications. For in-depth analysis, the equivalent circuit of the filter is also proposed. At last, it shows that the measured results agree well with the simulated results. The insertion loss of the filter within each passband is less than 1.9 dB, meanwhile two transmission zeros are obtained which can be able to meet the engineering requirements.展开更多
基金This work was supported by the ICT R&D program of MSIT/IITP,[2019-0-00102,A Study on Public Health and Safety in a Complex EMF Environment].This work was also supported by the National Radio ResearchAgency,[Rapid measurement system for new technologyantenna].
文摘We designed and constructed a novel,compact tri-band monopole antenna for intelligent devices.Multiband behavior was achieved by placing inverted-L shaped stubs of various lengths in a triangular monopole antenna fed by a coplanar waveguide.The resonance frequency of each band can be controlled by varying the length of the corresponding stub.Three bands,at 2.4(2.37-2.51),3.5(3.34-3.71),and 5.5(4.6-6.4)GHz,were easily obtained using three stubs of different lengths.For miniaturization,a portion of the longest stub(at 2.4 GHz)was printed on the opposite side of the substrate,and connected to the main stub via a shorting pin.To validate the concept,the antenna was fabricated on a low-cost 1.6-mm-thick FR-4 substrate with dimensions of 20×15×1.6 mm^(3).The antenna exhibited a moderate average gain of 2.9 dBi with an omnidirectional radiations over the bandwidths required for RFID,Bluetooth,ISM,WiMAX,andWLAN-band applications.These features make the antenna suitable for compact smart devices.
文摘<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to the non-radiating edges of a radiating element is presented. The experimental results show that two element slot-loaded gap-coupled microstrip array antenna gives a ?10 dB return loss band-width for three bands. The design specifications, radiation patterns and gain of the proposed antennas are presented and described. </div>
文摘This paper presents the tri-band slot loaded patch antenna for mobile communication. The antenna consists of parallel slots loaded circular disk with defected ground structure antenna (DGS). The antenna without DGS, acts like wide band antenna and bandwidth is 34.45% (3.47 - 4.92 GHz) with maximum gain of 4.97 dBi, which can be used in WiMax application. This structure has the following advantages: 1) co-axial feeding technique, which is very simple as compared to other feeding technique, 2) simple and cost effective and 3) it is more efficient than the antenna without DGS. This antenna has been analyzed using IE3D simulation software.
基金supported by the National Natural Science Foundation of China (61571063, 61202399, 61501100)
文摘A novel tri-band bandpass filter (BPF) is proposed by using cross-coupled stepped impedance resonators (SIRs), which can operate at 2.4 GHz, 3.5 GHz and 5.25 GHz respectively. In engineering application, it is suitable for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX). In addition, the passband of this filter can be easily controlled by changing the electrical parameters of the resonators. So it is helpful to the selection of passband in engineering applications. For in-depth analysis, the equivalent circuit of the filter is also proposed. At last, it shows that the measured results agree well with the simulated results. The insertion loss of the filter within each passband is less than 1.9 dB, meanwhile two transmission zeros are obtained which can be able to meet the engineering requirements.