In this communication, a new single-resistance controlled sinusoidal oscillator (SRCO) has been presented. The presented SRCO uses two voltage differencing inverting buffered amplifiers (VDIBAs), one resistor and two ...In this communication, a new single-resistance controlled sinusoidal oscillator (SRCO) has been presented. The presented SRCO uses two voltage differencing inverting buffered amplifiers (VDIBAs), one resistor and two capacitors in which one is grounded (GC) and the other one is floating (FC). The proposed structure offers the following advantageous features: 1) independent control of oscillation condition (OC) and oscillation frequency (OF);2) low passive and active sensitivities and 3) very good frequency stability. The non-ideal effects of the VDIBA on the proposed oscillator have also been investigated. The proposed SRCO has been tested for its robustness using Monte-Carlo simulations. The check of the validity of the presented SRCO has been established by SPICE simulations using 0.18 μm TSMC technology.展开更多
Recently, voltage differencing-differential input buffered amplifiers (VD-DIBA)-based electronically controllable sinusoidal oscillator has been presented that it does not have the capability of complete independence ...Recently, voltage differencing-differential input buffered amplifiers (VD-DIBA)-based electronically controllable sinusoidal oscillator has been presented that it does not have the capability of complete independence of frequency of oscillation (FO) and condition of oscillation (CO) as well as electronic control of both CO and FO. In this article, a new fully-uncoupled electronically controllable sinusoidal oscillator using two VD-DIBAs, two grounded capacitors and two resistors has been proposed which offers important advantages such as 1) totally uncoupled and electronically controlled condition of oscillation (CO) and frequency of oscillation (FO);2) low active and passive sensitivities;and 3) a very good frequency stability factor. The effects of non-idealities of the VD-DIBAs on the proposed oscillator are also investigated. The validity of the proposed formulation has been confirmed by SPICE simulation with TSMC 0.18 μm process parameters.展开更多
A new Single-Resistance-Controlled (SRC) sinusoidal oscillator using single Voltage Differencing-Differential Input Buffered Amplifier (VD-DIBA), only four passive components (two capacitors and two resistors), is pre...A new Single-Resistance-Controlled (SRC) sinusoidal oscillator using single Voltage Differencing-Differential Input Buffered Amplifier (VD-DIBA), only four passive components (two capacitors and two resistors), is presented. The proposed structure provides the following advantageous features: 1) independent control of oscillation frequency and condition of oscillation and 2) low active and passive sensitivities. The effects of non-idealities of the VD-DIBA on the proposed oscillator have also been investigated. The proposed SRC sinusoidal oscillator has been checked for robustness using Monte-Carlo simulation. SPICE simulation results have been included using 0.35 μm MIETEC technology to confirm the validity of the proposed SRC sinusoidal oscillator.展开更多
Although a variety of applications of the OTRAs have been reported in literature, the pole of the transresistance gain Rm of the OTRA has been usually considered to affect the performance of the circuits due to being ...Although a variety of applications of the OTRAs have been reported in literature, the pole of the transresistance gain Rm of the OTRA has been usually considered to affect the performance of the circuits due to being parasitic. In this paper, the pole of the OTRA has been used to evolve some simple OTRA-based active-R circuits for realizing a synthetic inductor, single resistance controlled oscillator and low-pass/band-pass filter. The workability of all the proposed circuits has been verified by SPICE simulations and all the new circuits have been found to work as predicted by theory. The exemplary propositions suggest that it is worthwhile to further investigate new circuit designs using OTRA-pole.展开更多
In this paper, a new single-resistance controlled sinusoidal oscillator (SRCO) using single universal voltage conveyor (UVC) has been presented. The proposed SRCO employs single universal voltage conveyor, three resis...In this paper, a new single-resistance controlled sinusoidal oscillator (SRCO) using single universal voltage conveyor (UVC) has been presented. The proposed SRCO employs single universal voltage conveyor, three resistors, and two capacitors. The proposed configuration offers the following advantageous features (1) independent control of condition of oscillation and frequency of oscillation (2) low passive sensitivities. The validity of the proposed SRCO has been established by SPICE (version 16.5) simulations using Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm technology.展开更多
This paper presents a third-order quadrature sinusoidal oscillator (TOQSO) using two voltage differencing buffered amplifiers (VDBAs), three capacitors and a resistor. The new topology provides two quadrature voltage ...This paper presents a third-order quadrature sinusoidal oscillator (TOQSO) using two voltage differencing buffered amplifiers (VDBAs), three capacitors and a resistor. The new topology provides two quadrature voltage outputs. The condition of oscillation (CO) and frequency of oscillation (FO) are electronically independently controllable by the separate transconductance of the VDBAs. The workability of the proposed TOQSO is confirmed by SPICE (Version 16.5) simulation using Taiwan semiconductor manufacturing company (TSMC) 0.18 μm process parameters.展开更多
A new voltage-mode quadrature sinusoidal oscillator (QSO) using two voltage differencing-differential input buffered amplifiers (VD-DIBAs) and only three passive components (two capacitors and a resistor) is presented...A new voltage-mode quadrature sinusoidal oscillator (QSO) using two voltage differencing-differential input buffered amplifiers (VD-DIBAs) and only three passive components (two capacitors and a resistor) is presented. The proposed QSO circuit offers advantages of independent electronic control of both oscillation frequency and condition of oscillation, availability of two quadrature voltage outputs and low active and passive sensitivities. SPICE simulation results have been included using 0.35 μm MIETEC technology to confirm the validity of the proposed QSO oscillator.展开更多
A new non-sinusoidal oscillation waveform is constructed for controlling themold oscillation during continuous casting. Casting velocity and oscillation parameters are thenestablished for a computer model of the conti...A new non-sinusoidal oscillation waveform is constructed for controlling themold oscillation during continuous casting. Casting velocity and oscillation parameters are thenestablished for a computer model of the continuous casting process. The waveform distortioncoefficient ? of waveform function is close to the waveform distortion rate a, so s is taken for awhen the basic parameters are selected initially. The waveform function can be created for the servohydraulic system or the mechanical driving system. Industrial scale experiments show the waveformfunction is effective.展开更多
The investments of the electro-hydraulic servo system of the mold non-sinusoidal oscillator are great, the modification ratio of the mechanical type is unable to be adjusted online, and some continuous casters suffer ...The investments of the electro-hydraulic servo system of the mold non-sinusoidal oscillator are great, the modification ratio of the mechanical type is unable to be adjusted online, and some continuous casters suffer from server resonance during the casting. A mold non-sinusoidal oscillation mechanism driven by servomotor is proposed and the prototype is produced in the lab, the investment is low and the modification ratio is can be adjusted online, and the stability problem is studied. At first the dynamics model of the servomotor non-sinusoidal oscillation is established, and the kinematics differential function is deduced. Furthermore, based on the harmonic balance method, the eigenvalues of the system are solved; the criterion of the stability of the system is put forward. In addition, the eigenvalues and harmonic with different oscillating parameters are analyzed. Analytical results show that the real parts of the eigenvalues are positive, the system will be unstable, and the resonance will occur when the positive real parts of the eigenvalues are extremum. A foundation is established for solving the running smooth problem and next application of this mechanism.展开更多
In this paper, we propose a design of a current controlled Quadrature Sinusoidal Oscillator. The proposed circuit employs three optimized Multi-output translinear second generation current conveyer (MCCII). The oscill...In this paper, we propose a design of a current controlled Quadrature Sinusoidal Oscillator. The proposed circuit employs three optimized Multi-output translinear second generation current conveyer (MCCII). The oscillation condition and the oscillation frequency are independently controllable. The proposed Quadrature Oscillator frequency can be tuned in the range of [198 MHz –261 MHz] by a simple variation of a DC current. PSpice simulation results are performed using CMOS 0.35 μm process of AMS.展开更多
A new method for the solution of non-sinusoidal periodic states in linear fractionally damped oscillators is presented. The oscillator is forced by a periodic discontinuous waveform and a viscous element is taken into...A new method for the solution of non-sinusoidal periodic states in linear fractionally damped oscillators is presented. The oscillator is forced by a periodic discontinuous waveform and a viscous element is taken into account. The presented method avoids completely the Fourier series calculations of the input and output oscillator waveforms. In the proposed method, the steady-state response of fractionally damped oscillator is formulated directly in the time domain as a superposition of the zero-input and forced responses for each continuous piecewise segments of the forcing waveform, separately. The whole periodic response is reached by taking into account the continuity and periodicity conditions at instants of discontinuities of the excitation and then using the concatenation procedure for all segments. The method can be applied efficiently to discontinuous and continuous non-harmonic excitations equally well. Solutions are exact and there is no need to apply any of the widely up-to-date used frequency approaches. The Fourier series is completely cut out of the oscillator analysis.展开更多
To improve the slab quality, a kind of non-sinusoidal oscillation technique of mold driven by elliptic gears was developed. The waveform functions of non-sinusoidal oscillation were determined, and the calculation met...To improve the slab quality, a kind of non-sinusoidal oscillation technique of mold driven by elliptic gears was developed. The waveform functions of non-sinusoidal oscillation were determined, and the calculation method and curves of technological parameters for non-sinusoidal oscillation were given. At the case of waveform deviation factor a equal to 0.31 and oscillation amplitude h equal to ±2.7 mm, the relationship between oscillation frequency and casting speed is determined, and the technological parameters for non-sinusoidal oscillation are calculated. The testing results of industrial application indicated that this technique could not only improve the Slab surface quality, but also reduce the steel breakout.展开更多
Due to the disadvantages of complexity,high maintenance and vast investment of the electro-hydraulic servo oscillator,a new mechanical device synchronously driven by double servomotors was proposed. The working princi...Due to the disadvantages of complexity,high maintenance and vast investment of the electro-hydraulic servo oscillator,a new mechanical device synchronously driven by double servomotors was proposed. The working principle of the non-sinusoidal oscillator was analyzed and the model of the oscillator was validated via simulation software.Then,taking advantage of resonance technology,the hinging force and moment were calculated. The results showed that the hinging force and driving moment reduced,which was useful in reducing the impact of the hinge and prolonging the service life of the bearing. Besides,the best initial spring pressure was 0. 9 times the mold gravity,which improved the oscillation system stability and reduced the load fluctuation and servomotor driving power.展开更多
An unsteady model of vortex system is developed to simulate the phenomena of aerodynamic hysteresis of sinusoidally oscillating delta wings.The dynamic behavior of leading-edge separation vortices simulated by the pre...An unsteady model of vortex system is developed to simulate the phenomena of aerodynamic hysteresis of sinusoidally oscillating delta wings.The dynamic behavior of leading-edge separation vortices simulated by the present method is in qualitative agreement with that of flow visualization by Gad-el-Hak and Ho.The calculated lift hysteresis loops are in quantitative agreement with the force measurements in the tunnel.The aerodynamic mechanism of the hysteresis phenomena is further investigated by the present method.展开更多
文摘In this communication, a new single-resistance controlled sinusoidal oscillator (SRCO) has been presented. The presented SRCO uses two voltage differencing inverting buffered amplifiers (VDIBAs), one resistor and two capacitors in which one is grounded (GC) and the other one is floating (FC). The proposed structure offers the following advantageous features: 1) independent control of oscillation condition (OC) and oscillation frequency (OF);2) low passive and active sensitivities and 3) very good frequency stability. The non-ideal effects of the VDIBA on the proposed oscillator have also been investigated. The proposed SRCO has been tested for its robustness using Monte-Carlo simulations. The check of the validity of the presented SRCO has been established by SPICE simulations using 0.18 μm TSMC technology.
文摘Recently, voltage differencing-differential input buffered amplifiers (VD-DIBA)-based electronically controllable sinusoidal oscillator has been presented that it does not have the capability of complete independence of frequency of oscillation (FO) and condition of oscillation (CO) as well as electronic control of both CO and FO. In this article, a new fully-uncoupled electronically controllable sinusoidal oscillator using two VD-DIBAs, two grounded capacitors and two resistors has been proposed which offers important advantages such as 1) totally uncoupled and electronically controlled condition of oscillation (CO) and frequency of oscillation (FO);2) low active and passive sensitivities;and 3) a very good frequency stability factor. The effects of non-idealities of the VD-DIBAs on the proposed oscillator are also investigated. The validity of the proposed formulation has been confirmed by SPICE simulation with TSMC 0.18 μm process parameters.
文摘A new Single-Resistance-Controlled (SRC) sinusoidal oscillator using single Voltage Differencing-Differential Input Buffered Amplifier (VD-DIBA), only four passive components (two capacitors and two resistors), is presented. The proposed structure provides the following advantageous features: 1) independent control of oscillation frequency and condition of oscillation and 2) low active and passive sensitivities. The effects of non-idealities of the VD-DIBA on the proposed oscillator have also been investigated. The proposed SRC sinusoidal oscillator has been checked for robustness using Monte-Carlo simulation. SPICE simulation results have been included using 0.35 μm MIETEC technology to confirm the validity of the proposed SRC sinusoidal oscillator.
文摘Although a variety of applications of the OTRAs have been reported in literature, the pole of the transresistance gain Rm of the OTRA has been usually considered to affect the performance of the circuits due to being parasitic. In this paper, the pole of the OTRA has been used to evolve some simple OTRA-based active-R circuits for realizing a synthetic inductor, single resistance controlled oscillator and low-pass/band-pass filter. The workability of all the proposed circuits has been verified by SPICE simulations and all the new circuits have been found to work as predicted by theory. The exemplary propositions suggest that it is worthwhile to further investigate new circuit designs using OTRA-pole.
文摘In this paper, a new single-resistance controlled sinusoidal oscillator (SRCO) using single universal voltage conveyor (UVC) has been presented. The proposed SRCO employs single universal voltage conveyor, three resistors, and two capacitors. The proposed configuration offers the following advantageous features (1) independent control of condition of oscillation and frequency of oscillation (2) low passive sensitivities. The validity of the proposed SRCO has been established by SPICE (version 16.5) simulations using Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm technology.
文摘This paper presents a third-order quadrature sinusoidal oscillator (TOQSO) using two voltage differencing buffered amplifiers (VDBAs), three capacitors and a resistor. The new topology provides two quadrature voltage outputs. The condition of oscillation (CO) and frequency of oscillation (FO) are electronically independently controllable by the separate transconductance of the VDBAs. The workability of the proposed TOQSO is confirmed by SPICE (Version 16.5) simulation using Taiwan semiconductor manufacturing company (TSMC) 0.18 μm process parameters.
文摘A new voltage-mode quadrature sinusoidal oscillator (QSO) using two voltage differencing-differential input buffered amplifiers (VD-DIBAs) and only three passive components (two capacitors and a resistor) is presented. The proposed QSO circuit offers advantages of independent electronic control of both oscillation frequency and condition of oscillation, availability of two quadrature voltage outputs and low active and passive sensitivities. SPICE simulation results have been included using 0.35 μm MIETEC technology to confirm the validity of the proposed QSO oscillator.
文摘A new non-sinusoidal oscillation waveform is constructed for controlling themold oscillation during continuous casting. Casting velocity and oscillation parameters are thenestablished for a computer model of the continuous casting process. The waveform distortioncoefficient ? of waveform function is close to the waveform distortion rate a, so s is taken for awhen the basic parameters are selected initially. The waveform function can be created for the servohydraulic system or the mechanical driving system. Industrial scale experiments show the waveformfunction is effective.
基金Supported by National Natural Science Foundation of China and Baosteel Group Co.Ltd.(Grant No.U1260203)Natural Science Foundation Steel and Iron Foundation of Hebei Province,China(Grant No.F2013203291)+1 种基金Doctor Startup Foundation of Hebei University of Science and Technology,China(Grant No.QD201247)Foundation of Hebei University of Science and Technology,China(Grant No.XL201004)
文摘The investments of the electro-hydraulic servo system of the mold non-sinusoidal oscillator are great, the modification ratio of the mechanical type is unable to be adjusted online, and some continuous casters suffer from server resonance during the casting. A mold non-sinusoidal oscillation mechanism driven by servomotor is proposed and the prototype is produced in the lab, the investment is low and the modification ratio is can be adjusted online, and the stability problem is studied. At first the dynamics model of the servomotor non-sinusoidal oscillation is established, and the kinematics differential function is deduced. Furthermore, based on the harmonic balance method, the eigenvalues of the system are solved; the criterion of the stability of the system is put forward. In addition, the eigenvalues and harmonic with different oscillating parameters are analyzed. Analytical results show that the real parts of the eigenvalues are positive, the system will be unstable, and the resonance will occur when the positive real parts of the eigenvalues are extremum. A foundation is established for solving the running smooth problem and next application of this mechanism.
文摘In this paper, we propose a design of a current controlled Quadrature Sinusoidal Oscillator. The proposed circuit employs three optimized Multi-output translinear second generation current conveyer (MCCII). The oscillation condition and the oscillation frequency are independently controllable. The proposed Quadrature Oscillator frequency can be tuned in the range of [198 MHz –261 MHz] by a simple variation of a DC current. PSpice simulation results are performed using CMOS 0.35 μm process of AMS.
文摘A new method for the solution of non-sinusoidal periodic states in linear fractionally damped oscillators is presented. The oscillator is forced by a periodic discontinuous waveform and a viscous element is taken into account. The presented method avoids completely the Fourier series calculations of the input and output oscillator waveforms. In the proposed method, the steady-state response of fractionally damped oscillator is formulated directly in the time domain as a superposition of the zero-input and forced responses for each continuous piecewise segments of the forcing waveform, separately. The whole periodic response is reached by taking into account the continuity and periodicity conditions at instants of discontinuities of the excitation and then using the concatenation procedure for all segments. The method can be applied efficiently to discontinuous and continuous non-harmonic excitations equally well. Solutions are exact and there is no need to apply any of the widely up-to-date used frequency approaches. The Fourier series is completely cut out of the oscillator analysis.
基金Item Sponsored by National Natural Science Foundation of China(51275446)National Natural Science Foundation of China and Baosteel Group Co.,Ltd.(U1260203)Natural Science Foundation of Hebei Province of China(E2012203080)
文摘To improve the slab quality, a kind of non-sinusoidal oscillation technique of mold driven by elliptic gears was developed. The waveform functions of non-sinusoidal oscillation were determined, and the calculation method and curves of technological parameters for non-sinusoidal oscillation were given. At the case of waveform deviation factor a equal to 0.31 and oscillation amplitude h equal to ±2.7 mm, the relationship between oscillation frequency and casting speed is determined, and the technological parameters for non-sinusoidal oscillation are calculated. The testing results of industrial application indicated that this technique could not only improve the Slab surface quality, but also reduce the steel breakout.
基金financially supported by the National Natural Science Foundation of China(51275446, 61503323 )National Natural Science Foundation of China and Baosteel Group Co.,Ltd.(U1260203)Natural Science Foundation of Hebe Province of China(E2016203492)
文摘Due to the disadvantages of complexity,high maintenance and vast investment of the electro-hydraulic servo oscillator,a new mechanical device synchronously driven by double servomotors was proposed. The working principle of the non-sinusoidal oscillator was analyzed and the model of the oscillator was validated via simulation software.Then,taking advantage of resonance technology,the hinging force and moment were calculated. The results showed that the hinging force and driving moment reduced,which was useful in reducing the impact of the hinge and prolonging the service life of the bearing. Besides,the best initial spring pressure was 0. 9 times the mold gravity,which improved the oscillation system stability and reduced the load fluctuation and servomotor driving power.
文摘An unsteady model of vortex system is developed to simulate the phenomena of aerodynamic hysteresis of sinusoidally oscillating delta wings.The dynamic behavior of leading-edge separation vortices simulated by the present method is in qualitative agreement with that of flow visualization by Gad-el-Hak and Ho.The calculated lift hysteresis loops are in quantitative agreement with the force measurements in the tunnel.The aerodynamic mechanism of the hysteresis phenomena is further investigated by the present method.