By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents so...By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents some explicit formulas of the first and second derivatives of rational triangular Bézier surface with respect to each variable (including the mixed derivative) and derives some estimations of bound both on the direction and magnitude of the corresponding derivatives. All the results above have value not only in surface theory but also in practice.展开更多
We implemented accurate FFD in terms of triangular Bezier surfaces as matrix multiplications in CUDA and rendered them via OpenGL. Experimental results show that the proposed algorithm is more efficient than the previ...We implemented accurate FFD in terms of triangular Bezier surfaces as matrix multiplications in CUDA and rendered them via OpenGL. Experimental results show that the proposed algorithm is more efficient than the previous GPU acceleration algorithm and tessel- lation shader algorithms.展开更多
An explicit formula is developed to decompose a rational triangular Bezierpatch into three non-degenerate rational rectangular B6zier patches of the samedegree. This formula yields a stable algorithm to compute the co...An explicit formula is developed to decompose a rational triangular Bezierpatch into three non-degenerate rational rectangular B6zier patches of the samedegree. This formula yields a stable algorithm to compute the control verticesof those three rectallgular subpatches. Some properties of the subdivision arediscussed and the formula is illustrated with an example.展开更多
A new algorithm is presented that generates developable Bézier surfaces through a Bézier curve called a directrix. The algorithm is based on differential geometry theory on necessary and sufficient condition...A new algorithm is presented that generates developable Bézier surfaces through a Bézier curve called a directrix. The algorithm is based on differential geometry theory on necessary and sufficient conditions for a surface which is developable, and on degree evaluation formula for parameter curves and linear independence for Bernstein basis. No nonlinear characteristic equations have to be solved. Moreover the vertex for a cone and the edge of regression for a tangent surface can be obtained easily. Aumann’s algorithm for developable surfaces is a special case of this paper.展开更多
To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accura...To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.展开更多
A novel reconstruction method from contours lines is provided. First, we use a simple method to get rid of redundant points on every contour, then we interpolate them by using cubic Bézier spline curve. For corre...A novel reconstruction method from contours lines is provided. First, we use a simple method to get rid of redundant points on every contour, then we interpolate them by using cubic Bézier spline curve. For corresponding points of different con- tours, we interpolate them by the cubic Bézier spline curve too, so the whole surface can be reconstructed by the bi-cubic Bézier spline surface. The reconstructed surface is smooth because every Bézier surface is patched with G2 continuity, the reconstruction speed is fast because we can use the forward elimination and backward substitution method to solve the system of tridiagonal equations. We give some reconstruction examples at the end of this paper. Experiments showed that our method is applicable and effective.展开更多
A method for computing the visible regions of free-form surfaces is proposed in this paper. Our work is focused on accurately calculating the visible regions of the sequenced rational Bézier surfaces forming a so...A method for computing the visible regions of free-form surfaces is proposed in this paper. Our work is focused on accurately calculating the visible regions of the sequenced rational Bézier surfaces forming a solid model and having coincident edges but no inner-intersection among them. The proposed method calculates the silhouettes of the surfaces without tessellating them into triangle meshes commonly used in previous methods so that arbitrary precision can be obtained. The computed sil- houettes of visible surfaces are projected onto a plane orthogonal to the parallel light. Then their spatial relationship is applied to calculate the boundaries of mutual-occlusion regions. As the connectivity of the surfaces on the solid model is taken into account, a surface clustering technique is also employed and the mutual-occlusion calculation is accelerated. Experimental results showed that our method is efficient and robust, and can also handle complex shapes with arbitrary precision.展开更多
With the help of several discriminants about the zero points of a quartic polynomial, the sufficient and necessary conditions for the positivity and nonnegativity of the quartic polynomial over an interval I(-∞,+...With the help of several discriminants about the zero points of a quartic polynomial, the sufficient and necessary conditions for the positivity and nonnegativity of the quartic polynomial over an interval I(-∞,+∞) was derived. Based on these conclusions, the sufficient and necessary conditions for the positivity and convexity of the 2×2 Bézier surface over a rectangle were obtained. A simple sufficient condition was deduced also and finally several examples were given.展开更多
Surface convexity is a key issue in computer aided geometric design, which is widely applied in geometric modeling field, such as physical models, industrial design, automatic manufacturing, etc. In this paper, a suff...Surface convexity is a key issue in computer aided geometric design, which is widely applied in geometric modeling field, such as physical models, industrial design, automatic manufacturing, etc. In this paper, a sufficient convexity condition of the parametric Bézier surface over rectangles is proposed, which is firstly considered as a sufficient convexity condition for the Bézier control grid. The condition is proved by De Casteljau surface subdivision arithmetic, in which the recursive expressions elaborate that the control grid eventually converges to the surface. At last, two examples for the modeling of interpolation-type surface are discussed, one of which is a general surface and the other is a degenerate surface.展开更多
This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we...This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.展开更多
A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several inter...A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.展开更多
In this paper,we present a method for generating Bézier surfaces from the boundary information based on a general second order functional and a third order functional associated with the triharmonic equation.By s...In this paper,we present a method for generating Bézier surfaces from the boundary information based on a general second order functional and a third order functional associated with the triharmonic equation.By solving simple linear equations,the internal control points of the resulting Bézier surface can be obtained as linear combinations of the given boundary control points.This is a generalization of previous works on Plateau-Bezier problem,harmonic,biharmonic and quasi-harmonic Bézier surfaces.Some representative examples show the effectiveness of the presented method.展开更多
The necessary and sufficient conditions and an algorithm to reach continuity between adjacent Bézier patches are presented. The effects of shape parameters for surface connection of G4 geometric continuity are in...The necessary and sufficient conditions and an algorithm to reach continuity between adjacent Bézier patches are presented. The effects of shape parameters for surface connection of G4 geometric continuity are investigated in detail. The algorithm can be generalized directly to the case of surface joining with higher order geometric continuity. It has important applications in surface modeling and surface joining.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60373033 & 60333010), the National Natural Science Foundation for Innovative Research Groups (No. 60021201), and the National Basic Research Program (973) of China (No. 2002CB312101)
文摘By introducing the homogenous coordinates, degree elevation formulas and combinatorial identities, also by using multiplication of Bernstein polynomials and identity transformation on equations, this paper presents some explicit formulas of the first and second derivatives of rational triangular Bézier surface with respect to each variable (including the mixed derivative) and derives some estimations of bound both on the direction and magnitude of the corresponding derivatives. All the results above have value not only in surface theory but also in practice.
基金Supported by the National Natural Science Foundation of China(61170138 and 61472349)
文摘We implemented accurate FFD in terms of triangular Bezier surfaces as matrix multiplications in CUDA and rendered them via OpenGL. Experimental results show that the proposed algorithm is more efficient than the previous GPU acceleration algorithm and tessel- lation shader algorithms.
文摘An explicit formula is developed to decompose a rational triangular Bezierpatch into three non-degenerate rational rectangular B6zier patches of the samedegree. This formula yields a stable algorithm to compute the control verticesof those three rectallgular subpatches. Some properties of the subdivision arediscussed and the formula is illustrated with an example.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719400), the National Natural Science Founda-tion of China (Nos. 60373033 and 60333010) and the National Natural Science Foundation for Innovative Research Groups (No. 60021201), China
文摘A new algorithm is presented that generates developable Bézier surfaces through a Bézier curve called a directrix. The algorithm is based on differential geometry theory on necessary and sufficient conditions for a surface which is developable, and on degree evaluation formula for parameter curves and linear independence for Bernstein basis. No nonlinear characteristic equations have to be solved. Moreover the vertex for a cone and the edge of regression for a tangent surface can be obtained easily. Aumann’s algorithm for developable surfaces is a special case of this paper.
基金The National Natural Science Foundation of China under contract No.61471024the National Marine Technology Program for Public Welfare under contract No.201505002-1the Beijing Higher Education Young Elite Teacher Project under contract No.YETP0514
文摘To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.
基金Project supported by the National Natural Science Foundation of China (Nos. 60373070 and 60573147), Postdoctor Foundation of Shanghai (No. 05R214129), and Zhejiang Education Foundation of China (No. 20050786)
文摘A novel reconstruction method from contours lines is provided. First, we use a simple method to get rid of redundant points on every contour, then we interpolate them by using cubic Bézier spline curve. For corresponding points of different con- tours, we interpolate them by the cubic Bézier spline curve too, so the whole surface can be reconstructed by the bi-cubic Bézier spline surface. The reconstructed surface is smooth because every Bézier surface is patched with G2 continuity, the reconstruction speed is fast because we can use the forward elimination and backward substitution method to solve the system of tridiagonal equations. We give some reconstruction examples at the end of this paper. Experiments showed that our method is applicable and effective.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312106) and the National Natural Science Foundation of China (Nos. 60533070, and 60403047). The third author was supported by the project sponsored by a Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200342) and a Program for New Century Excellent Talents in Uni-versity (No. NCET-04-0088), China
文摘A method for computing the visible regions of free-form surfaces is proposed in this paper. Our work is focused on accurately calculating the visible regions of the sequenced rational Bézier surfaces forming a solid model and having coincident edges but no inner-intersection among them. The proposed method calculates the silhouettes of the surfaces without tessellating them into triangle meshes commonly used in previous methods so that arbitrary precision can be obtained. The computed sil- houettes of visible surfaces are projected onto a plane orthogonal to the parallel light. Then their spatial relationship is applied to calculate the boundaries of mutual-occlusion regions. As the connectivity of the surfaces on the solid model is taken into account, a surface clustering technique is also employed and the mutual-occlusion calculation is accelerated. Experimental results showed that our method is efficient and robust, and can also handle complex shapes with arbitrary precision.
文摘With the help of several discriminants about the zero points of a quartic polynomial, the sufficient and necessary conditions for the positivity and nonnegativity of the quartic polynomial over an interval I(-∞,+∞) was derived. Based on these conclusions, the sufficient and necessary conditions for the positivity and convexity of the 2×2 Bézier surface over a rectangle were obtained. A simple sufficient condition was deduced also and finally several examples were given.
文摘Surface convexity is a key issue in computer aided geometric design, which is widely applied in geometric modeling field, such as physical models, industrial design, automatic manufacturing, etc. In this paper, a sufficient convexity condition of the parametric Bézier surface over rectangles is proposed, which is firstly considered as a sufficient convexity condition for the Bézier control grid. The condition is proved by De Casteljau surface subdivision arithmetic, in which the recursive expressions elaborate that the control grid eventually converges to the surface. At last, two examples for the modeling of interpolation-type surface are discussed, one of which is a general surface and the other is a degenerate surface.
基金This research was fully supported by Universiti Teknologi PETRONAS(UTP)and Ministry of Education,Malaysia through research grant FRGS/1/2018/STG06/UTP/03/1/015 MA0-020(New rational quartic spline interpolation for image refinement)and UTP through a research grant YUTP:0153AA-H24(Spline Triangulation for Spatial Interpolation of Geophysical Data).
文摘This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with C1 continuity everywhere.We derive the C1 condition on each adjacent triangle.On each triangular patch,we employ convex combination method between three local schemes.The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets.We tested the proposed scheme with 36,65,and 100 data points for some well-known test functions.The scheme is also applied to interpolate the data for the electric potential.We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin(PS)and Clough–Tocher(CT)by measuring the maximum error,root mean square error(RMSE)and coefficient of determination(R^(2)).From the results obtained,our proposed method is competent with cubic Bézier,cubic Ball,PS and CT triangles splitting schemes to interpolate scattered data surface.This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.
文摘A family of Said-Bézier type generalized Ball (SBGB) bases and surfaces with a parameter H over triangular domain is introduced,which unifies Bézier surface and Said-Ball surface and includes several intermediate surfaces. To convert different bases and surfaces,the dual functionals of bases are presented. As an application of dual functionals,the subdivision formulas for surfaces are established.
基金supported by the National Natural Science Foundation of China(No.11801225)University Science Research Project of Jiangsu Province(No.18KJB110005)the Research Foundation for Advanced Talents of Jiangsu University(No.14JDG034).
文摘In this paper,we present a method for generating Bézier surfaces from the boundary information based on a general second order functional and a third order functional associated with the triharmonic equation.By solving simple linear equations,the internal control points of the resulting Bézier surface can be obtained as linear combinations of the given boundary control points.This is a generalization of previous works on Plateau-Bezier problem,harmonic,biharmonic and quasi-harmonic Bézier surfaces.Some representative examples show the effectiveness of the presented method.
文摘The necessary and sufficient conditions and an algorithm to reach continuity between adjacent Bézier patches are presented. The effects of shape parameters for surface connection of G4 geometric continuity are investigated in detail. The algorithm can be generalized directly to the case of surface joining with higher order geometric continuity. It has important applications in surface modeling and surface joining.