As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making proble...As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.展开更多
The evaluation of thesis by undergraduate has the characteristics of multi-factor, multi-layer and easy to be affected by subjective factors. To reduce the subjectivity, triangular fuzzy number is used as index set to...The evaluation of thesis by undergraduate has the characteristics of multi-factor, multi-layer and easy to be affected by subjective factors. To reduce the subjectivity, triangular fuzzy number is used as index set to give weight, and on this basis, fuzzy comprehensive evaluation is used to evaluate the quality of graduation thesis. The empirical analysis shows that the combination of triangular fuzzy number and fuzzy comprehensive evaluation has certain practical value in the quality evaluation of graduation thesis.展开更多
The traditional triangular fuzzy fault tree prediction model adopts the linear approximation method.Therefore,the accident prediction error is large.Based on the analysis of the error sources and the fuzzy set,the pre...The traditional triangular fuzzy fault tree prediction model adopts the linear approximation method.Therefore,the accident prediction error is large.Based on the analysis of the error sources and the fuzzy set,the precise calculation method of the event at the top of the fault tree is given.By using the numerical calculation software,an accurate calculation method of nonlinear triangular fuzzy accident prediction was adopted to predict lithium battery air transport fire accidents,and the fuzzy importance of the cause event was calculated.展开更多
The intuitionistic triangular fuzzy set is a generalization of the intuitionistic fuzzy set. In practical applications, we find that the results derived by using the traditional intuitionistic triangular fuzzy aggrega...The intuitionistic triangular fuzzy set is a generalization of the intuitionistic fuzzy set. In practical applications, we find that the results derived by using the traditional intuitionistic triangular fuzzy aggregation operators based on intuitionistic triangular fuzzy sets are sometimes inconsistent with intuition. To overcome this issue, based on the [1/9, 9] scale, we define the concepts of intuitionistic multiplicative triangular fuzzy set and intuitionistic multiplicative triangular fuzzy number, and then we discuss their operational laws and some desirable properties. Based on the operational laws, we develop a series of aggregation operators for intuitionistic multiplicative triangular fuzzy information, and then apply them to propose an approach to multi-attribute decision making under intuitionistic fuzzy environments. Finally, we use a practical example involving the evaluation of investment alternatives of an investment company to demonstrate our aggregation operators and decision making approach.展开更多
Surface accuracy directly affects the surface quality and performance of mechanical parts.Circular hole,especially spatial non-planar hole set is the typical feature and working surface of mechanical parts.Compared wi...Surface accuracy directly affects the surface quality and performance of mechanical parts.Circular hole,especially spatial non-planar hole set is the typical feature and working surface of mechanical parts.Compared with traditional machining methods,additive manufacturing(AM)technology can decrease the surface accuracy errors of circular holes during fabrication.However,an accuracy error may still exist on the surface of circular holes fabricated by AM due to the influence of staircase effect.This study proposes a surface accuracy optimization approach for mechanical parts with multiple circular holes for AM based on triangular fuzzy number(TFN).First,the feature lines on the manifold mesh are extracted using the dihedral angle method and normal tensor voting to detect the circular holes.Second,the optimal AM part build orientation is determined using the genetic algorithm to optimize the surface accuracy of the circular holes by minimizing the weighted volumetric error of the part.Third,the corresponding weights of the circular holes are calculated with the TFN analytic hierarchy process in accordance with the surface accuracy requirements.Lastly,an improved adaptive slicing algorithm is utilized to reduce the entire build time while maintaining the forming surface accuracy of the circular holes using digital twins via virtual printing.The effectiveness of the proposed approach is experimentally validated using two mechanical models.展开更多
Purpose–The purpose of this paper is to study a nascent theory and an emerging concept of solving a fully fuzzy linear system(FFLS)with no non negative restrictions on the triangular fuzzy numbers chosen as parameter...Purpose–The purpose of this paper is to study a nascent theory and an emerging concept of solving a fully fuzzy linear system(FFLS)with no non negative restrictions on the triangular fuzzy numbers chosen as parameters.Two new simplified computational methods are proposed to solve a FFLS without any sign restrictions.The first method eliminates the non-negativity constraint from the coefficient matrix while the second method eliminates the constraint of non-negativity on the solution vector.The methods are introduced with an objective to broaden the domain of fuzzy linear systems to encompass a wide range of problems occurring in reality.Design/methodology/approach–The design of numerical methods is motivated by decomposing the fuzzy based linear system into its equivalent crisp linear form which can be further solved by variety of classical methods to solve a crisp linear system.Further the paper investigates Schur complement technique to solve the crisp equivalent of the FFLS.Findings–The results that are obtained reveal interesting properties of a FFLS.By using the proposed methods,the authors are able to check the consistency of the fuzzy linear system as well as obtain the nature of obtained solutions,i.e.trivial,unique or infinite.Further it is also seen that an n£n FFLS may yield finitely many solutions which may not be entirely feasible(strong).Also the methods successfully remove the non-negativity restriction on the coefficient matrix and the solution vector,respectively.Research limitations/implications–Evolving methods with better computational complexity and that which remove the non-negativity restriction jointly on all the parameters are left as an open problem.Originality/value–The proposed methods are new and conceptually simple to understand and apply in several scientific areas where fuzziness persists.The methods successfully remove several constraints that have been employed exhaustively by researchers and thus eventually tend to widen the breadth of applicability and usability of fuzzy linear models in real life situations.Heretofore,the usability of FFLS is largely dormant.展开更多
On this paper,we proposed a generalize,incorporated deliver chain model for providers and outlets where delay in bills is obtainable through the suppliers and the shops for consistent deteriorating items.First,we prov...On this paper,we proposed a generalize,incorporated deliver chain model for providers and outlets where delay in bills is obtainable through the suppliers and the shops for consistent deteriorating items.First,we provide the mathematical formulations for the trouble beneath have a look at,and then endorse the solution process to derive the top-quality solution.right here shortages are not allowed.here we projected exponential call for for stores and the suppliers.An goal of this paper is to take a look at the stock modeling through fuzzy environment.right here we use triangular fuzzy range for purchasing the greatest answer.further an efficient algorithm is developed to decide most useful answer.Our technique is illustrated via a few numerical instance to showcase the utility and the overall performance of the proposed method.展开更多
This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzzines...This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzziness and com-plexity.In these situations,judgments are represented by the set of fuzzy numbers.Most of the fuzzy optimization models derive crisp priorities for judgments repre-sented with Triangular Fuzzy Numbers(TFNs)only.They do not work for other types of Triangular Shaped Fuzzy Numbers(TSFNs)and Trapezoidal Fuzzy Numbers(TrFNs).To overcome this problem,a sum of squared error(SSE)based optimization model is proposed.Unlike some other methods,the proposed model derives crisp weights from all of the above-mentioned fuzzy judgments.A fuzzy number is simulated using the Monte Carlo method.A threshold-based constraint is also applied to minimize the deviation from the initial judgments.Genetic Algorithm(GA)is used to solve the optimization model.We have also conducted casestudiesto show the proposed approach’s advantages over the existingmethods.Results show that the proposed model outperforms other models to minimize SSE and deviation from initial judgments.Thus,the proposed model can be applied in various real time scenarios as it can reduce the SSE value upto 29%compared to the existing studies.展开更多
In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved...In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved to satisfy all of the constructive principles. Further, a novel concept of the type-2 triangular in- tuitionistic trapezoidal fuzzy set (T2TITrFS) is developed, and a geometric interpretation of the T2TITrFS is given to comprehend it completely or correctly in a more intuitive way. To deal with a more general uncertain complex system, the constructive principles of an entropy measure of T2TITrFS are therefore proposed on the basis of the axiomatic definition of the type-2 intuitionisic fuzzy entropy measure. This paper elicits a formula of type-2 triangular intuitionistic trapezoidal fuzzy entropy and verifies that it does sa- tisfy the constructive principles. Two examples are given to show the efficiency of the proposed entropy of T2TITrFS in describing the uncertainty of the type-2 intuitionistic fuzzy information and illustrate its application in type-2 triangular intuitionistic trapezodial fuzzy decision making problems.展开更多
This paper discusses the problem of finding a shortest path from a fixed origin s to a specified node t in a network with arcs represented as typical triangular fuzzy numbers (TFN). Because of the characterist...This paper discusses the problem of finding a shortest path from a fixed origin s to a specified node t in a network with arcs represented as typical triangular fuzzy numbers (TFN). Because of the characteristic of TFNs, the length of any path p from s to t , which equals the extended sum of all arcs belonging to p , is also TFN. Therefore, the fuzzy shortest path problem (FSPP) becomes to select the smallest among all those TFNs corresponding to different paths from s to t (specifically, the smallest TFN represents the shortest path). Based on Adamo's method for ranking fuzzy number, the pessimistic method and its extensions - optimistic method and λ combination method, are presented, and the FSPP is finally converted into the crisp shortest path problems.展开更多
In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing...In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing triangular fuzzy numbers. We utilize the fuzzy linguistic scale to construct a linguistic preference matrix, and propose a fuzzy induced ordered weighted geometric averaging (FIOWGA) operator to aggregate linguistic preference information. A method based on the fuzzy linguistic scale and FIOWGA operator for decision-making problems is presented. Finally, an illustrative example is given to verify the developed method and to demonstrate its feasibility and effectiveness.展开更多
This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly know...This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.展开更多
The objective of this work was to determine the location of emergency material warehouses. For the site selection problem of emergency material warehouses, the triangular fuzzy numbers are respectively demand of the d...The objective of this work was to determine the location of emergency material warehouses. For the site selection problem of emergency material warehouses, the triangular fuzzy numbers are respectively demand of the demand node, the distance between the warehouse and demand node and the cost of the warehouse, a bi-objective programming model was established with minimum total cost of the system and minimum distance between the selected emergency material warehouses and the demand node. Using the theories of fuzzy numbers, the fuzzy programming model was transformed into a determinate bi-objective mixed integer programming model and a heuristic algorithm for this model was designed. Then, the algorithm was proven to be feasible and effective through a numerical example. Analysis results show that the location of emergency material warehouse depends heavily on the values of degree a and weight wl. Accurate information of a certain emergency activity should be collected before making the decision.展开更多
The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as ...The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.展开更多
A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) ...A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.展开更多
In a two-stage supply chain composed of one supplier and one retailer,the supply chain coordination mechanism in a fuzzy continuous demand environment is researched.A positive triangular fuzzy number is used to model ...In a two-stage supply chain composed of one supplier and one retailer,the supply chain coordination mechanism in a fuzzy continuous demand environment is researched.A positive triangular fuzzy number is used to model the external market demand.Using the method of fuzzy cut sets theory,both fuzzy decentralized and centralized decision-making processes are analyzed,and another model of fuzzy return contract is proposed to help coordinate such supply chain.It is shown that in fuzzy environment there exists a unique solution of the retailer's optimal order quantity,the double marginalization problem can be solved by providing different tactics for wholesale pricing and return pricing,and the fuzzy expected profit of each actor can be expected to improve in the return contract.Finally,a numerical example is given to illustrate the models and the solution-seeking process.展开更多
Modification of a fuzzy partition often leads to the change of fuzziness of a fuzzy system. Researches on the change of fuzzy entropy of a fuzzy set, responding to shape alteration of membership function, therefore...Modification of a fuzzy partition often leads to the change of fuzziness of a fuzzy system. Researches on the change of fuzzy entropy of a fuzzy set, responding to shape alteration of membership function, therefore, play a significant role in analysis of the change of fuzziness of a fuzzy system because a fuzzy partition consists of a set of fuzzy sets which satisfy some special constraints. This paper has shown several results about entropy changes of a fuzzy set. First, the entropies of two same type of fuzzy sets have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Second, as for Triangular Fuzzy Numbers (TFNs), the entropies of any two TFNs which can not be always the same type, also, have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Hence, any two TFNs with the same sizes of support intervals have the same entropies. Third, concerning two Triangular Fuzzy Sets (TFSs) with same sizes of support intervals and different heights, the relationship of their entropies lies on their height. Finally, we point it out a mistake that Chen's assertion that the entropy of resultant fuzzy set of elevation operation is directly to that of the original one while elevation factor just acts as a propartional factor. These results should contribute to the analysis and design of a fuzzy system.展开更多
This paper establishes the fuzzy discounted cash flow model to settle the uncertainties of the cash flow and discount rate in two-stage DCF model, to take the imprecise of the time period of the supernormal growth pha...This paper establishes the fuzzy discounted cash flow model to settle the uncertainties of the cash flow and discount rate in two-stage DCF model, to take the imprecise of the time period of the supernormal growth phase with considering the investor's attitude to risk. Firstly, the discount rate and the growth rate are fuzzified as triangular fuzzy numbers in this fuzzy discounted cash flow model. Then the intrinsic value of an asset can be evaluated by the arithmetic operation on interval and λ- signed distance method under the framework of DCF approach. Finally, a listed company at Shanghai Stock Exchange is analyzed as the case to demonstrate the process of stock value calculation by the fuzzy discounted cash flow model.展开更多
In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two ...In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.展开更多
Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The a...Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance.展开更多
基金supported by the Key Research and Development Project of Hunan Province(2019SK2331)the Natural Science Foundation of Hunan Province(2019JJ40099,2019JJ40100,2020JJ4339)+2 种基金the Key Scientific Research Project of Hunan Education Department(18A317,19A202)the Scientific Research Fund of Hunan Provincial Education Department(20B272)the Innovation Foundation for Postgraduate of Hunan Institute of Science and Technology(YCX2020A34).
文摘As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.
文摘The evaluation of thesis by undergraduate has the characteristics of multi-factor, multi-layer and easy to be affected by subjective factors. To reduce the subjectivity, triangular fuzzy number is used as index set to give weight, and on this basis, fuzzy comprehensive evaluation is used to evaluate the quality of graduation thesis. The empirical analysis shows that the combination of triangular fuzzy number and fuzzy comprehensive evaluation has certain practical value in the quality evaluation of graduation thesis.
基金supported by Shanghai University New Teacher Training Research Project.
文摘The traditional triangular fuzzy fault tree prediction model adopts the linear approximation method.Therefore,the accident prediction error is large.Based on the analysis of the error sources and the fuzzy set,the precise calculation method of the event at the top of the fault tree is given.By using the numerical calculation software,an accurate calculation method of nonlinear triangular fuzzy accident prediction was adopted to predict lithium battery air transport fire accidents,and the fuzzy importance of the cause event was calculated.
基金supported in part by the National Natural Science Foundation of China(Nos.71071161 and 61273209)
文摘The intuitionistic triangular fuzzy set is a generalization of the intuitionistic fuzzy set. In practical applications, we find that the results derived by using the traditional intuitionistic triangular fuzzy aggregation operators based on intuitionistic triangular fuzzy sets are sometimes inconsistent with intuition. To overcome this issue, based on the [1/9, 9] scale, we define the concepts of intuitionistic multiplicative triangular fuzzy set and intuitionistic multiplicative triangular fuzzy number, and then we discuss their operational laws and some desirable properties. Based on the operational laws, we develop a series of aggregation operators for intuitionistic multiplicative triangular fuzzy information, and then apply them to propose an approach to multi-attribute decision making under intuitionistic fuzzy environments. Finally, we use a practical example involving the evaluation of investment alternatives of an investment company to demonstrate our aggregation operators and decision making approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.51775494,51821093,and 51935009)the National Key R&D Program of China(Grant No.2018YFB1700701)+1 种基金the Science and Technology Project of Zhejiang Province,China(Grant No.2019C01141)the Zhejiang Provincial Basic Public Welfare Research Project,China(Grant Nos.LGG18E050007 and LGG21E050020).
文摘Surface accuracy directly affects the surface quality and performance of mechanical parts.Circular hole,especially spatial non-planar hole set is the typical feature and working surface of mechanical parts.Compared with traditional machining methods,additive manufacturing(AM)technology can decrease the surface accuracy errors of circular holes during fabrication.However,an accuracy error may still exist on the surface of circular holes fabricated by AM due to the influence of staircase effect.This study proposes a surface accuracy optimization approach for mechanical parts with multiple circular holes for AM based on triangular fuzzy number(TFN).First,the feature lines on the manifold mesh are extracted using the dihedral angle method and normal tensor voting to detect the circular holes.Second,the optimal AM part build orientation is determined using the genetic algorithm to optimize the surface accuracy of the circular holes by minimizing the weighted volumetric error of the part.Third,the corresponding weights of the circular holes are calculated with the TFN analytic hierarchy process in accordance with the surface accuracy requirements.Lastly,an improved adaptive slicing algorithm is utilized to reduce the entire build time while maintaining the forming surface accuracy of the circular holes using digital twins via virtual printing.The effectiveness of the proposed approach is experimentally validated using two mechanical models.
文摘Purpose–The purpose of this paper is to study a nascent theory and an emerging concept of solving a fully fuzzy linear system(FFLS)with no non negative restrictions on the triangular fuzzy numbers chosen as parameters.Two new simplified computational methods are proposed to solve a FFLS without any sign restrictions.The first method eliminates the non-negativity constraint from the coefficient matrix while the second method eliminates the constraint of non-negativity on the solution vector.The methods are introduced with an objective to broaden the domain of fuzzy linear systems to encompass a wide range of problems occurring in reality.Design/methodology/approach–The design of numerical methods is motivated by decomposing the fuzzy based linear system into its equivalent crisp linear form which can be further solved by variety of classical methods to solve a crisp linear system.Further the paper investigates Schur complement technique to solve the crisp equivalent of the FFLS.Findings–The results that are obtained reveal interesting properties of a FFLS.By using the proposed methods,the authors are able to check the consistency of the fuzzy linear system as well as obtain the nature of obtained solutions,i.e.trivial,unique or infinite.Further it is also seen that an n£n FFLS may yield finitely many solutions which may not be entirely feasible(strong).Also the methods successfully remove the non-negativity restriction on the coefficient matrix and the solution vector,respectively.Research limitations/implications–Evolving methods with better computational complexity and that which remove the non-negativity restriction jointly on all the parameters are left as an open problem.Originality/value–The proposed methods are new and conceptually simple to understand and apply in several scientific areas where fuzziness persists.The methods successfully remove several constraints that have been employed exhaustively by researchers and thus eventually tend to widen the breadth of applicability and usability of fuzzy linear models in real life situations.Heretofore,the usability of FFLS is largely dormant.
基金National Board for Higher Mathematics,Government of India under the scheme of NBHM research project[grant number 2/48(9)/2013/NBHM(R.P)/R&D II/Dated16.01.2014].
文摘On this paper,we proposed a generalize,incorporated deliver chain model for providers and outlets where delay in bills is obtainable through the suppliers and the shops for consistent deteriorating items.First,we provide the mathematical formulations for the trouble beneath have a look at,and then endorse the solution process to derive the top-quality solution.right here shortages are not allowed.here we projected exponential call for for stores and the suppliers.An goal of this paper is to take a look at the stock modeling through fuzzy environment.right here we use triangular fuzzy range for purchasing the greatest answer.further an efficient algorithm is developed to decide most useful answer.Our technique is illustrated via a few numerical instance to showcase the utility and the overall performance of the proposed method.
文摘This paper proposes anoptimal fuzzy-based model for obtaining crisp priorities for Fuzzy-AHP comparison matrices.Crisp judgments cannot be given for real-life situations,as most of these include some level of fuzziness and com-plexity.In these situations,judgments are represented by the set of fuzzy numbers.Most of the fuzzy optimization models derive crisp priorities for judgments repre-sented with Triangular Fuzzy Numbers(TFNs)only.They do not work for other types of Triangular Shaped Fuzzy Numbers(TSFNs)and Trapezoidal Fuzzy Numbers(TrFNs).To overcome this problem,a sum of squared error(SSE)based optimization model is proposed.Unlike some other methods,the proposed model derives crisp weights from all of the above-mentioned fuzzy judgments.A fuzzy number is simulated using the Monte Carlo method.A threshold-based constraint is also applied to minimize the deviation from the initial judgments.Genetic Algorithm(GA)is used to solve the optimization model.We have also conducted casestudiesto show the proposed approach’s advantages over the existingmethods.Results show that the proposed model outperforms other models to minimize SSE and deviation from initial judgments.Thus,the proposed model can be applied in various real time scenarios as it can reduce the SSE value upto 29%compared to the existing studies.
基金supported by the National Natural Science Foundation of China(7137115670971017)the Research Grants Council of the Hong Kong Special Administrative Region,China(City U112111)
文摘In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved to satisfy all of the constructive principles. Further, a novel concept of the type-2 triangular in- tuitionistic trapezoidal fuzzy set (T2TITrFS) is developed, and a geometric interpretation of the T2TITrFS is given to comprehend it completely or correctly in a more intuitive way. To deal with a more general uncertain complex system, the constructive principles of an entropy measure of T2TITrFS are therefore proposed on the basis of the axiomatic definition of the type-2 intuitionisic fuzzy entropy measure. This paper elicits a formula of type-2 triangular intuitionistic trapezoidal fuzzy entropy and verifies that it does sa- tisfy the constructive principles. Two examples are given to show the efficiency of the proposed entropy of T2TITrFS in describing the uncertainty of the type-2 intuitionistic fuzzy information and illustrate its application in type-2 triangular intuitionistic trapezodial fuzzy decision making problems.
文摘This paper discusses the problem of finding a shortest path from a fixed origin s to a specified node t in a network with arcs represented as typical triangular fuzzy numbers (TFN). Because of the characteristic of TFNs, the length of any path p from s to t , which equals the extended sum of all arcs belonging to p , is also TFN. Therefore, the fuzzy shortest path problem (FSPP) becomes to select the smallest among all those TFNs corresponding to different paths from s to t (specifically, the smallest TFN represents the shortest path). Based on Adamo's method for ranking fuzzy number, the pessimistic method and its extensions - optimistic method and λ combination method, are presented, and the FSPP is finally converted into the crisp shortest path problems.
基金The National Natural Science Foundation of China(79970093) the Ph.D. Dissertation Foundation of Southeast University- NARI-Relays Electric Co. Ltd.
文摘In this paper, we present a fuzzy linguistic scale, which is characterized by triangular fuzzy numbers on [1/9, 9], for the comparison between two alternatives, and introduce a possibility degree formula for comparing triangular fuzzy numbers. We utilize the fuzzy linguistic scale to construct a linguistic preference matrix, and propose a fuzzy induced ordered weighted geometric averaging (FIOWGA) operator to aggregate linguistic preference information. A method based on the fuzzy linguistic scale and FIOWGA operator for decision-making problems is presented. Finally, an illustrative example is given to verify the developed method and to demonstrate its feasibility and effectiveness.
基金supported by the National Natural Science Foundation of China (70473037)the Key Project of National Development and Reform Commission (1009-213011)
文摘This paper is concerned with a technique for order performance by similarity to ideal solution(TOPSIS) method for fuzzy multi-attribute decision making,in which the information about attribute weights is partly known and the attribute values take form of triangular fuzzy numbers.Considering the fact that the triangular fuzzy TOPSIS results yielded by different distance measures are different from others,a comparative analysis of triangular fuzzy TOPSIS ranking from each distance measure is illustrated with discussion on standard deviation.By applying the most reasonable distance,the deviation degrees between attribute values are measured.A linear programming model based on the maximal deviation of weighted attribute values is established to obtain the attribute weights.Therefore,alternatives are ranked by using TOPSIS method.Finally,a numerical example is given to show the feasibility and effectiveness of the method.
基金Project(71071162)supported by the National Natural Science Foundation of China
文摘The objective of this work was to determine the location of emergency material warehouses. For the site selection problem of emergency material warehouses, the triangular fuzzy numbers are respectively demand of the demand node, the distance between the warehouse and demand node and the cost of the warehouse, a bi-objective programming model was established with minimum total cost of the system and minimum distance between the selected emergency material warehouses and the demand node. Using the theories of fuzzy numbers, the fuzzy programming model was transformed into a determinate bi-objective mixed integer programming model and a heuristic algorithm for this model was designed. Then, the algorithm was proven to be feasible and effective through a numerical example. Analysis results show that the location of emergency material warehouse depends heavily on the values of degree a and weight wl. Accurate information of a certain emergency activity should be collected before making the decision.
文摘The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.
基金supported by the National Natural Science Foundation of China(71202140)the Fundamental Research for the Central Universities(HUST:2013QN099)
文摘A new fully fuzzy linear programming (FFLP) problem with fuzzy equality constraints is discussed. Using deviation degree measures, the FFLP problem is transformed into a crisp 6-parametric linear programming (LP) problem. Giving the value of deviation degree in each constraint, the 6-fuzzy optimal solution of the FFLP problem can be obtained by solving this LP problem. An algorithm is also proposed to find a balance-fuzzy optimal solution between two goals in conflict: to improve the values of the objective function and to decrease the values of the deviation degrees. A numerical example is solved to illustrate the proposed method.
基金Sponsored by the National Natural Science Foundation of China (7047106370771010)
文摘In a two-stage supply chain composed of one supplier and one retailer,the supply chain coordination mechanism in a fuzzy continuous demand environment is researched.A positive triangular fuzzy number is used to model the external market demand.Using the method of fuzzy cut sets theory,both fuzzy decentralized and centralized decision-making processes are analyzed,and another model of fuzzy return contract is proposed to help coordinate such supply chain.It is shown that in fuzzy environment there exists a unique solution of the retailer's optimal order quantity,the double marginalization problem can be solved by providing different tactics for wholesale pricing and return pricing,and the fuzzy expected profit of each actor can be expected to improve in the return contract.Finally,a numerical example is given to illustrate the models and the solution-seeking process.
基金The National Natural Science Foundation of China(No.60474022)
文摘Modification of a fuzzy partition often leads to the change of fuzziness of a fuzzy system. Researches on the change of fuzzy entropy of a fuzzy set, responding to shape alteration of membership function, therefore, play a significant role in analysis of the change of fuzziness of a fuzzy system because a fuzzy partition consists of a set of fuzzy sets which satisfy some special constraints. This paper has shown several results about entropy changes of a fuzzy set. First, the entropies of two same type of fuzzy sets have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Second, as for Triangular Fuzzy Numbers (TFNs), the entropies of any two TFNs which can not be always the same type, also, have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Hence, any two TFNs with the same sizes of support intervals have the same entropies. Third, concerning two Triangular Fuzzy Sets (TFSs) with same sizes of support intervals and different heights, the relationship of their entropies lies on their height. Finally, we point it out a mistake that Chen's assertion that the entropy of resultant fuzzy set of elevation operation is directly to that of the original one while elevation factor just acts as a propartional factor. These results should contribute to the analysis and design of a fuzzy system.
基金Supported by the Natural Science Foundation of Anhui Province (Item No: 070416276X).
文摘This paper establishes the fuzzy discounted cash flow model to settle the uncertainties of the cash flow and discount rate in two-stage DCF model, to take the imprecise of the time period of the supernormal growth phase with considering the investor's attitude to risk. Firstly, the discount rate and the growth rate are fuzzified as triangular fuzzy numbers in this fuzzy discounted cash flow model. Then the intrinsic value of an asset can be evaluated by the arithmetic operation on interval and λ- signed distance method under the framework of DCF approach. Finally, a listed company at Shanghai Stock Exchange is analyzed as the case to demonstrate the process of stock value calculation by the fuzzy discounted cash flow model.
文摘In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.
基金the National Key R&D Program of China under Grant 2018YFB1700104.
文摘Utilizing granular computing to enhance artificial neural network architecture, a newtype of network emerges—thegranular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability toprocess both numerical and granular data, leading to improved interpretability. This paper proposes a novel designmethod for constructing GNNs, drawing inspiration from existing interval-valued neural networks built uponNNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzynumbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizesa uniform distribution of information granularity to granulate connections with unknown parameters, resultingin independent GNN structures. To quantify the granularity output of the network, the product of two commonperformance indices is adopted: The coverage of numerical data and the specificity of information granules.Optimizing this combined performance index helps determine the optimal parameters for the network. Finally,the paper presents the complete model construction and validates its feasibility through experiments on datasetsfrom the UCIMachine Learning Repository. The results demonstrate the proposed algorithm’s effectiveness andpromising performance.