Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurat...Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application.展开更多
The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Ro...The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
We give a brief discussion of some of the contributions of Peter Lax to Com- putational Fluid Dynamics. These include the Lax-Friedrichs and Lax-Wendroff numerical schemes. We also mention his collaboration in the 198...We give a brief discussion of some of the contributions of Peter Lax to Com- putational Fluid Dynamics. These include the Lax-Friedrichs and Lax-Wendroff numerical schemes. We also mention his collaboration in the 1983 HLL Riemann solver. We de- velop two-dimensional Lax-Friedrichs and Lax-Wendroff schemes for the Lagrangian form of the Euler equations on triangular grids. We apply a composite scheme that uses a Lax- Friedrichs time step as a dissipative filter after several Lax-Wendroff time steps. Numerical results for Noh's infinite strength shock problem, the Sedov blast wave problem, and the Saltzman piston problem are presented.展开更多
In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using...In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory. The most general bending stretching couplings, the effect of eccentricity of stiffeners are considered. Then, for general stability of composite triangular grid stiffened conical shells without twist coupling terms, the approximate formulas are obtained for critical external pressure by using Galerkin's procedure. Numerical examples for a certain C/E composite conical shells with inside triangular grid stiffeners are calculated and the results are in good agreement with the experimental data. Finally, the influence of some parameters on critical external pressure is studied. The stability equations developed and the formulas for critical external pressure obtained in this paper should be very useful in the astronautical engineering design.展开更多
A new method for constructing a fitting surface on a triangular grid is presented. Assuming images are obtained by sampling from the original scene. Conventional polynomial interpolation methods generally construct th...A new method for constructing a fitting surface on a triangular grid is presented. Assuming images are obtained by sampling from the original scene. Conventional polynomial interpolation methods generally construct the fitting surface on a square grid. Different from existing methods, the new method constructs the fitting surface on a triangular grid which can divide the original surface more detailed and improve approximation accuracy. As the quality of the image edges plays a key role in visual effects of image, the new method uses image edges as constraints to get a triangle grid. The new method constructs a cubic polynomial patch locally using image data to approximate the original surface. Experimental comparison results of the new method with other methods show that the new method can produce high-quality images and remove the zigzagging artifact.展开更多
The family of Falk-Neilan P_(k)finite elements,combined with the Argyris P_(k+1)finite elements,solves the Reissner-Mindlin plate equation quasi-optimally and locking-free,on triangular meshes.The method is truly conf...The family of Falk-Neilan P_(k)finite elements,combined with the Argyris P_(k+1)finite elements,solves the Reissner-Mindlin plate equation quasi-optimally and locking-free,on triangular meshes.The method is truly conforming or consistent in the sense that no projection/reduction is introduced.Theoretical proof and numerical confirmation are presented.展开更多
Constructing Bernstein-Bezier triangular interpolating curve surface interpolating a series of arbitrary disordered data points is of considerable importance for the design and modeling of surfaces with a variety of c...Constructing Bernstein-Bezier triangular interpolating curve surface interpolating a series of arbitrary disordered data points is of considerable importance for the design and modeling of surfaces with a variety of continuity information. In this article. a kind of simple and reliable algorithm that can process complex field triangular grid generating is presented, and a group of formulae for determining triangular curved surface with wholly C1 continuity are given. It can process arbitrary non-convex boundary and can be used to construct surfaces inner holes.展开更多
Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent...Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.展开更多
The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, ma...The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.展开更多
A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shoc...A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shock transition on unstructured triangular grid. The third order TVD Range-Kutta method is used for time discretization. The model has been firstly tested against four cases: 1) tidal forcing, 2) seiche oscillation, 3) wind setup in a closed bay, and 4) onedimensional dam-break water flow. The results obtained in the present study compare well with those obtained from the corresponding analytic solutions idealized for the above four cases. The model is then applied to the simulation of tidal circulation in the Yangpu Bay, and detailed model calibration and verification have been conducted with measured tidal current in the spring tide, middle tide, and neap tide. The overall performance of the model is in qualitative agreement with the data observed in 2005, and it can be used to calculate the flow in estuaries and coastal waters.展开更多
In this work we propose a mathematical model to simulate Chikungunya spread;the spread model is implemented in a C++ cellular automata code defined on unstructured triangular grids and space visualizations are perform...In this work we propose a mathematical model to simulate Chikungunya spread;the spread model is implemented in a C++ cellular automata code defined on unstructured triangular grids and space visualizations are performed with Python.In order to simulate the time space spread of the Chikungunya diseases we include assumptions such as:heterogeneous human and vector densities,population mobility,geographically localized points of infection using geographical information systems,changes in the probabilities of infection,extrinsic incubation and mosquito death rate due to environmental variables.Numerical experiments reproduce the qualitative behavior of diseases spread and provide an insight to develop strategies to prevent the diseases spread.展开更多
Based on the author’s previous research, a novel hybrid grid generation technique is developed by introducing an Artificial Neural Network(ANN) approach for realistic viscous flow simulations. An initial hybrid grid ...Based on the author’s previous research, a novel hybrid grid generation technique is developed by introducing an Artificial Neural Network(ANN) approach for realistic viscous flow simulations. An initial hybrid grid over a typical geometry with anisotropic quadrilaterals in the boundary layer and isotropic triangles in the off-body region is generated by the classical mesh generation method to train two ANNs on how to predict the advancing direction of the new point and to control the grid size. After inputting the initial discretized fronts, the ANN-based Advancing Layer Method(ALM) is adopted to generate the anisotropic quadrilaterals in boundary layers. When the high aspect ratio of the anisotropic grid reaches a specified value, the ANN-based Advancing Front Method(AFM) is adopted to generate isotropic triangles in the off-body computational domain.The initial isotropic triangles are smoothed to further improve the grid quality. Three typical cases are tested and compared with experimental data to validate the effectiveness of grids generated by the ANN-based hybrid grid generation method. The experimental results show that the two ANNs can predict the advancing direction and the grid size very well, and improve the adaptability of the isotropic/anisotropic hybrid grid generation for viscous flow simulations.展开更多
基金sponsored by National Natural Science Foundation(40474041)National Symposium of 863(2006AA06Z206)+1 种基金National Symposium of 973(2007CB209605)CNPC Geophysical Key Laboratory of the China University of Petroleum (East China) Research Department
文摘Compared with other migration methods, reverse-time migration is based on a precise wave equation, not an approximation, and performs extrapolation in the depth domain rather than the time domain. It is highly accurate and not affected by strong subsurface structure complexity and horizontal velocity variations. The difference method based on triangular grids maintains the simplicity of the difference method and the precision of the finite element method. It can be used directly for forward modeling on models with complex top surfaces and migration without statics preprocessing. We apply a finite difference method based on triangular grids for post-stack reverse-time migration for the first time. Tests on model data verify that the combination of the two methods can achieve near-perfect results in application.
基金This paper was supported bythe Natural Science Foundation of Shandong Province (Grant No.y2004f13)
文摘The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.
基金performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No.DE-AC52-06NA25396supported in part by the Czech Science Foundation GrantP205/10/0814the Czech Ministry of Education grants MSM 6840770022 and LC528
文摘We give a brief discussion of some of the contributions of Peter Lax to Com- putational Fluid Dynamics. These include the Lax-Friedrichs and Lax-Wendroff numerical schemes. We also mention his collaboration in the 1983 HLL Riemann solver. We de- velop two-dimensional Lax-Friedrichs and Lax-Wendroff schemes for the Lagrangian form of the Euler equations on triangular grids. We apply a composite scheme that uses a Lax- Friedrichs time step as a dissipative filter after several Lax-Wendroff time steps. Numerical results for Noh's infinite strength shock problem, the Sedov blast wave problem, and the Saltzman piston problem are presented.
基金The Project supported by the Doctoral Research Foundation of the State Education Commission of China
文摘In this paper, based on the theory of Donnell-type shallow shell, a new displacement-type stability equations is first developed for laminated composite circular conical shells with triangular grid stiffeners by using the variational calculus and generalized smeared-stiffener theory. The most general bending stretching couplings, the effect of eccentricity of stiffeners are considered. Then, for general stability of composite triangular grid stiffened conical shells without twist coupling terms, the approximate formulas are obtained for critical external pressure by using Galerkin's procedure. Numerical examples for a certain C/E composite conical shells with inside triangular grid stiffeners are calculated and the results are in good agreement with the experimental data. Finally, the influence of some parameters on critical external pressure is studied. The stability equations developed and the formulas for critical external pressure obtained in this paper should be very useful in the astronautical engineering design.
基金Supported by National Natural Science Foundation of China(61572292,61373078,61272430)NSFC Joint Fund with Guangdong under Key Project(U1201258)
文摘A new method for constructing a fitting surface on a triangular grid is presented. Assuming images are obtained by sampling from the original scene. Conventional polynomial interpolation methods generally construct the fitting surface on a square grid. Different from existing methods, the new method constructs the fitting surface on a triangular grid which can divide the original surface more detailed and improve approximation accuracy. As the quality of the image edges plays a key role in visual effects of image, the new method uses image edges as constraints to get a triangle grid. The new method constructs a cubic polynomial patch locally using image data to approximate the original surface. Experimental comparison results of the new method with other methods show that the new method can produce high-quality images and remove the zigzagging artifact.
文摘The family of Falk-Neilan P_(k)finite elements,combined with the Argyris P_(k+1)finite elements,solves the Reissner-Mindlin plate equation quasi-optimally and locking-free,on triangular meshes.The method is truly conforming or consistent in the sense that no projection/reduction is introduced.Theoretical proof and numerical confirmation are presented.
文摘Constructing Bernstein-Bezier triangular interpolating curve surface interpolating a series of arbitrary disordered data points is of considerable importance for the design and modeling of surfaces with a variety of continuity information. In this article. a kind of simple and reliable algorithm that can process complex field triangular grid generating is presented, and a group of formulae for determining triangular curved surface with wholly C1 continuity are given. It can process arbitrary non-convex boundary and can be used to construct surfaces inner holes.
基金financial support for this work contributed by the National Key Research and Development Program of China(Grants Nos.2016YFC0600101,2016YFC0600201 and 2016YFC0600302)the National Natural Science Foundation of China(Grants Nos.41522401 and 41474068)
文摘Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.
基金The Natural Science Foundation of Tianjin, China under contract No.08JCZDZT00200
文摘The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.
基金This work was supported by Open Research Fund Programof State Key Laboratory of Water Resources and Hydropow-er Engineering Science ( Grant No. 2005C011)National Natural Science Foundation of China ( Grant No.50479038)
文摘A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shock transition on unstructured triangular grid. The third order TVD Range-Kutta method is used for time discretization. The model has been firstly tested against four cases: 1) tidal forcing, 2) seiche oscillation, 3) wind setup in a closed bay, and 4) onedimensional dam-break water flow. The results obtained in the present study compare well with those obtained from the corresponding analytic solutions idealized for the above four cases. The model is then applied to the simulation of tidal circulation in the Yangpu Bay, and detailed model calibration and verification have been conducted with measured tidal current in the spring tide, middle tide, and neap tide. The overall performance of the model is in qualitative agreement with the data observed in 2005, and it can be used to calculate the flow in estuaries and coastal waters.
基金This work has been developed during a sabbatical academic year at the University of British Columbia at Vancouver,supported by the Universidad Veracruzana and the mathematics department at the University of British Columbia,at Vancouver B.C.,Canada.
文摘In this work we propose a mathematical model to simulate Chikungunya spread;the spread model is implemented in a C++ cellular automata code defined on unstructured triangular grids and space visualizations are performed with Python.In order to simulate the time space spread of the Chikungunya diseases we include assumptions such as:heterogeneous human and vector densities,population mobility,geographically localized points of infection using geographical information systems,changes in the probabilities of infection,extrinsic incubation and mosquito death rate due to environmental variables.Numerical experiments reproduce the qualitative behavior of diseases spread and provide an insight to develop strategies to prevent the diseases spread.
基金supported by the National Key Re-search and Development Program of China(No.2016YFB0200701)the National Natural Science Foundation of China(Nos.11532016 and 11672324)the National Key Project(No.GJXM92579)。
文摘Based on the author’s previous research, a novel hybrid grid generation technique is developed by introducing an Artificial Neural Network(ANN) approach for realistic viscous flow simulations. An initial hybrid grid over a typical geometry with anisotropic quadrilaterals in the boundary layer and isotropic triangles in the off-body region is generated by the classical mesh generation method to train two ANNs on how to predict the advancing direction of the new point and to control the grid size. After inputting the initial discretized fronts, the ANN-based Advancing Layer Method(ALM) is adopted to generate the anisotropic quadrilaterals in boundary layers. When the high aspect ratio of the anisotropic grid reaches a specified value, the ANN-based Advancing Front Method(AFM) is adopted to generate isotropic triangles in the off-body computational domain.The initial isotropic triangles are smoothed to further improve the grid quality. Three typical cases are tested and compared with experimental data to validate the effectiveness of grids generated by the ANN-based hybrid grid generation method. The experimental results show that the two ANNs can predict the advancing direction and the grid size very well, and improve the adaptability of the isotropic/anisotropic hybrid grid generation for viscous flow simulations.