The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method impl...The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method implemented in ANSYS Fluent 14.5 in conjunction with the continuum surface force model. It is found that for both hydrophobic and hydrophilic microchannels, the coalescence between the moving liquid column and droplet can accelerate the original liquid column movement as a result of the induced curvature that lowers the liquid pressure at the interface. As compared to the rectangular microchannel with the same hydraulic diameter, the triangular microchannel exhibits smaller velocity increment ratio because of stronger viscous effect. Simulation results also reveal that the velocity increment ratio increases with the contact angle in hydrophobic microchannels, but it is reverse in the hydrophilic microchannels. The effects of the droplet size, lengthways and transverse positions are also investigated in this work. It is shown that larger droplet and smaller distance between the droplet and inlet or the substrate center can result in larger velocity increment ratio as a result of higher surface energy and lower viscous dissipation energy, respectively. The results obtained in this study create a solid theoretical foundation for designingand optimizing microfluidic devices encountering such a typical phenomenon.展开更多
A theoretical analysis of heat transfer characteristics is presented for the fully developed laminar flow of the incompressible gas in the triangular microchannels heated unsymmetrically with constant axial heat flux....A theoretical analysis of heat transfer characteristics is presented for the fully developed laminar flow of the incompressible gas in the triangular microchannels heated unsymmetrically with constant axial heat flux. Through solving the energy equation with temperature jump boundary conditions in slip flow regime by virtue of a computation- oriented method of the orthonormal function analysis, the dimensionless temperature profiles and the average Nusselt number for various thermal boundary conditions are obtained. The effects of Knudsen number, aspect ratio, and thermal boundary conditions on the heat transfer are discussed. The calculated results show that the orthonormal function method can be used to study the heat transfer characteristics of the unsymmetrically heated triangular microchannels. The average Nusselt number in triangular microchannels is lower for slip flow than for no-slip flow, and decreases with increasing Knudsen number. The aspect ratios and thermal boundary conditions of triangular microchannels have significant influences on the change of average Nusselt numbers with the increase in the Knudsen number. For the equilateral triangular microchannels, the decrease of the Nusselt number ratio due to temperature jump is smaller at large Knudsen number and larger at small Knudsen number on the boundary condition of bottom wall heated alone as compared with the one on the boundary condition of two heated hypotenuse walls. The correlations of the average Nusselt number with the Knudsen number for equilateral triangular microchannels are obtained.展开更多
基金supported by the National Natural Science Foundation of China(5122260351276208 and51325602)+1 种基金the Fundamental Research Funds for the Central Universities(CDJZR12148801)Program for New Century Excellent Talents in University(NCET-12-0591)
文摘The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method implemented in ANSYS Fluent 14.5 in conjunction with the continuum surface force model. It is found that for both hydrophobic and hydrophilic microchannels, the coalescence between the moving liquid column and droplet can accelerate the original liquid column movement as a result of the induced curvature that lowers the liquid pressure at the interface. As compared to the rectangular microchannel with the same hydraulic diameter, the triangular microchannel exhibits smaller velocity increment ratio because of stronger viscous effect. Simulation results also reveal that the velocity increment ratio increases with the contact angle in hydrophobic microchannels, but it is reverse in the hydrophilic microchannels. The effects of the droplet size, lengthways and transverse positions are also investigated in this work. It is shown that larger droplet and smaller distance between the droplet and inlet or the substrate center can result in larger velocity increment ratio as a result of higher surface energy and lower viscous dissipation energy, respectively. The results obtained in this study create a solid theoretical foundation for designingand optimizing microfluidic devices encountering such a typical phenomenon.
基金the National Natural Science Foundation of China (Grant No.59995550-3) the support plan for key teacher of Chongqing University.
文摘A theoretical analysis of heat transfer characteristics is presented for the fully developed laminar flow of the incompressible gas in the triangular microchannels heated unsymmetrically with constant axial heat flux. Through solving the energy equation with temperature jump boundary conditions in slip flow regime by virtue of a computation- oriented method of the orthonormal function analysis, the dimensionless temperature profiles and the average Nusselt number for various thermal boundary conditions are obtained. The effects of Knudsen number, aspect ratio, and thermal boundary conditions on the heat transfer are discussed. The calculated results show that the orthonormal function method can be used to study the heat transfer characteristics of the unsymmetrically heated triangular microchannels. The average Nusselt number in triangular microchannels is lower for slip flow than for no-slip flow, and decreases with increasing Knudsen number. The aspect ratios and thermal boundary conditions of triangular microchannels have significant influences on the change of average Nusselt numbers with the increase in the Knudsen number. For the equilateral triangular microchannels, the decrease of the Nusselt number ratio due to temperature jump is smaller at large Knudsen number and larger at small Knudsen number on the boundary condition of bottom wall heated alone as compared with the one on the boundary condition of two heated hypotenuse walls. The correlations of the average Nusselt number with the Knudsen number for equilateral triangular microchannels are obtained.