研究表明将边表示的网络转换为三角形模体表示形式,可以有效解决基于模型社区发现方法由网络规模庞大带来的计算瓶颈问题.提出一个三角形模体社区发现模型MCDTM(a Model for Community Detection based on Triangular Motifs),其将网络...研究表明将边表示的网络转换为三角形模体表示形式,可以有效解决基于模型社区发现方法由网络规模庞大带来的计算瓶颈问题.提出一个三角形模体社区发现模型MCDTM(a Model for Community Detection based on Triangular Motifs),其将网络表示为一系列三角形模体,利用categorical分布对各三角形模体的生成过程建模,用最大似然参数估计方法给出参数估计的推理过程,根据参数估计结果可得节点、边及三角形模体的社区隶属度.人工网络和实际网络上的实验证明MCDTM模型可快速准确地发现网络的潜在结构.展开更多
为了提高社团发现算法的效率,提出了一种基于三角模体和期望极大的社团结构发现(Community structure discovery based on triangular motifs and expectation-maximization,CSDTME)模型的社团发现算法。CSDTME模型采用三角模体对网络...为了提高社团发现算法的效率,提出了一种基于三角模体和期望极大的社团结构发现(Community structure discovery based on triangular motifs and expectation-maximization,CSDTME)模型的社团发现算法。CSDTME模型采用三角模体对网络进行表示,考虑了节点的混合隶属度及社团间的链接关系,用期望极大算法计算模型涉及的参数,采用全三角模体和两边三角模体作为计算对象,通过减少计算对象来提高算法的效率,根据参数结果可得到节点的社团隶属度及社团间的链接关系。实验结果表明:在保证社团发现能力的同时,该算法能够提高社团发现的效率。展开更多
文摘研究表明将边表示的网络转换为三角形模体表示形式,可以有效解决基于模型社区发现方法由网络规模庞大带来的计算瓶颈问题.提出一个三角形模体社区发现模型MCDTM(a Model for Community Detection based on Triangular Motifs),其将网络表示为一系列三角形模体,利用categorical分布对各三角形模体的生成过程建模,用最大似然参数估计方法给出参数估计的推理过程,根据参数估计结果可得节点、边及三角形模体的社区隶属度.人工网络和实际网络上的实验证明MCDTM模型可快速准确地发现网络的潜在结构.
文摘为了提高社团发现算法的效率,提出了一种基于三角模体和期望极大的社团结构发现(Community structure discovery based on triangular motifs and expectation-maximization,CSDTME)模型的社团发现算法。CSDTME模型采用三角模体对网络进行表示,考虑了节点的混合隶属度及社团间的链接关系,用期望极大算法计算模型涉及的参数,采用全三角模体和两边三角模体作为计算对象,通过减少计算对象来提高算法的效率,根据参数结果可得到节点的社团隶属度及社团间的链接关系。实验结果表明:在保证社团发现能力的同时,该算法能够提高社团发现的效率。