In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient app...In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.展开更多
This paper adopts data mining(DM) technique and fuzzy system theory for robust time series forecasting.By introducing DM technique,the fuzzy rule extraction algorithm is improved to be more robust with the noises and ...This paper adopts data mining(DM) technique and fuzzy system theory for robust time series forecasting.By introducing DM technique,the fuzzy rule extraction algorithm is improved to be more robust with the noises and outliers in time series.Then,the constructed fuzzy inference system(FIS) is optimized with a partition refining strategy to balance the system's accuracy and complexity.The proposed algorithm is compared with the WangMendel(WM) method,a benchmark method for building FIS,in comprehensive analysis of robustness.In the classical Mackey-Glass time series forecasting,the simulation results prove that the proposed method is able to predict time series with random perturbation more accurately.For the practical application,the proposed FIS is applied to predicting the time series of ship maneuvering motion.To obtain actual time series data records,the ship maneuvering motion trial is conducted in the Yukun ship of Dalian Maritime University in China.The time series forecasting results show that the FIS constructed with DM concepts can forecast ship maneuvering motion robustly and effectively.展开更多
This paper establishes a new finite volume element scheme for Poisson equation on trian- gular meshes. The trial function space is taken as Lagrangian cubic finite element space on triangular partition, and the test f...This paper establishes a new finite volume element scheme for Poisson equation on trian- gular meshes. The trial function space is taken as Lagrangian cubic finite element space on triangular partition, and the test function space is defined as piecewise constant space on dual partition. Under some weak condition about the triangular meshes, the authors prove that the stiffness matrix is uni- formly positive definite and convergence rate to be O(h3) in Hi-norm. Some numerical experiments confirm the theoretical considerations.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11172172)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB013505)
文摘In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.
基金the Fundamental Research Funds for the Central Universities,China(No.01750307)the Doctoral Scientific Research Foundation of Liaoning Province,China(No.201501188)
文摘This paper adopts data mining(DM) technique and fuzzy system theory for robust time series forecasting.By introducing DM technique,the fuzzy rule extraction algorithm is improved to be more robust with the noises and outliers in time series.Then,the constructed fuzzy inference system(FIS) is optimized with a partition refining strategy to balance the system's accuracy and complexity.The proposed algorithm is compared with the WangMendel(WM) method,a benchmark method for building FIS,in comprehensive analysis of robustness.In the classical Mackey-Glass time series forecasting,the simulation results prove that the proposed method is able to predict time series with random perturbation more accurately.For the practical application,the proposed FIS is applied to predicting the time series of ship maneuvering motion.To obtain actual time series data records,the ship maneuvering motion trial is conducted in the Yukun ship of Dalian Maritime University in China.The time series forecasting results show that the FIS constructed with DM concepts can forecast ship maneuvering motion robustly and effectively.
基金This research is supported by the '985' programme of Jilin University, the National Natural Science Foundation of China under Grant Nos. 10971082 and 11076014.
文摘This paper establishes a new finite volume element scheme for Poisson equation on trian- gular meshes. The trial function space is taken as Lagrangian cubic finite element space on triangular partition, and the test function space is defined as piecewise constant space on dual partition. Under some weak condition about the triangular meshes, the authors prove that the stiffness matrix is uni- formly positive definite and convergence rate to be O(h3) in Hi-norm. Some numerical experiments confirm the theoretical considerations.