With the application of lightweight materials such as advanced high-strength steel and aluminum alloy in the automotive industry, it is necessary to quantitatively evaluate the ultimate deformation capacity of materia...With the application of lightweight materials such as advanced high-strength steel and aluminum alloy in the automotive industry, it is necessary to quantitatively evaluate the ultimate deformation capacity of materials under various plane stress states for the digital simulation of these materials. Conventional Nakajima test can only provide three regular plane stress states, such as tension, plane strain tension and bulging, and FLC curve is affected by deformation path, mold lubrication and other variables. More importantly, Nakajima test cannot provide shear, tension shear, which are extremely important loading conditions in automobile collisions. Therefore, the research work of this paper focuses on the evaluation of the ultimate ductile fracture behavior of sheet metals under various conditions of plane stress states. The four variables Mohr-Coulomb model was established to study the ductile fracture of metal sheets under plane stress states. Beginning with the recorded minor and major strain distributing on the deformation area of uniaxial tension samples, Moving Regression Algorithm was deployed to reveal the inherent relationship among the key parameters involved in the M-C model, which also provided an experimental technique for monitoring the instantaneous changing of triaxiality over the whole loading period. Three or four typical types of uniaxial-loading specimens were well designed to determine the M-C curve. As a result, M-C curve and the transformed major stain vs. minor strain curve provide further information about the material arrest to the ductile fracture in the area of shear loading, in comparison with the conventional FLD test.展开更多
The soil samples were collected from a shallow landslide hazard site of the Rangamati Sadar in Bangladesh to determine the shear strength properties of the soil. Multistage triaxial consolidation undrained test has be...The soil samples were collected from a shallow landslide hazard site of the Rangamati Sadar in Bangladesh to determine the shear strength properties of the soil. Multistage triaxial consolidation undrained test has become worldwide more accepted to determine the shear strength parameters. Multistage triaxial undrained tests were performed on five samples taken from five different depths of boreholes. Samples were evaluated under two natural conditions and three remolded situations. Samples were consolidated before shearing at confining pressures from 50 kPa to 1200 kPa. All the test results are discussed in terms of deviator stress versus axial strain, mean effective stress versus deviator curves, stress ratio versus axial strain, and excess p. w. p. versus axial strain curves. The samples consolidated at low effective stress first displayed peak positive values of excess p. w. p., followed by increased strains due to sample bulging failure, and only a few samples formed a shear surface failure. The strength parameters were estimated using the maximum deviator stress as the failure criterion i.e. the overall value of the cohesion is 20 kPa and the friction angle is 34°. Hence, the critical state line has been constructed and the critical state parameters have been calculated. The critical state stress ratio M was calculated to be 0.036. The shear strength of soil is one of the significant mechanical properties that are thoroughly used to assess the landslide and liquefaction potentiality of the soil.展开更多
Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construc...Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures.展开更多
文摘With the application of lightweight materials such as advanced high-strength steel and aluminum alloy in the automotive industry, it is necessary to quantitatively evaluate the ultimate deformation capacity of materials under various plane stress states for the digital simulation of these materials. Conventional Nakajima test can only provide three regular plane stress states, such as tension, plane strain tension and bulging, and FLC curve is affected by deformation path, mold lubrication and other variables. More importantly, Nakajima test cannot provide shear, tension shear, which are extremely important loading conditions in automobile collisions. Therefore, the research work of this paper focuses on the evaluation of the ultimate ductile fracture behavior of sheet metals under various conditions of plane stress states. The four variables Mohr-Coulomb model was established to study the ductile fracture of metal sheets under plane stress states. Beginning with the recorded minor and major strain distributing on the deformation area of uniaxial tension samples, Moving Regression Algorithm was deployed to reveal the inherent relationship among the key parameters involved in the M-C model, which also provided an experimental technique for monitoring the instantaneous changing of triaxiality over the whole loading period. Three or four typical types of uniaxial-loading specimens were well designed to determine the M-C curve. As a result, M-C curve and the transformed major stain vs. minor strain curve provide further information about the material arrest to the ductile fracture in the area of shear loading, in comparison with the conventional FLD test.
文摘The soil samples were collected from a shallow landslide hazard site of the Rangamati Sadar in Bangladesh to determine the shear strength properties of the soil. Multistage triaxial consolidation undrained test has become worldwide more accepted to determine the shear strength parameters. Multistage triaxial undrained tests were performed on five samples taken from five different depths of boreholes. Samples were evaluated under two natural conditions and three remolded situations. Samples were consolidated before shearing at confining pressures from 50 kPa to 1200 kPa. All the test results are discussed in terms of deviator stress versus axial strain, mean effective stress versus deviator curves, stress ratio versus axial strain, and excess p. w. p. versus axial strain curves. The samples consolidated at low effective stress first displayed peak positive values of excess p. w. p., followed by increased strains due to sample bulging failure, and only a few samples formed a shear surface failure. The strength parameters were estimated using the maximum deviator stress as the failure criterion i.e. the overall value of the cohesion is 20 kPa and the friction angle is 34°. Hence, the critical state line has been constructed and the critical state parameters have been calculated. The critical state stress ratio M was calculated to be 0.036. The shear strength of soil is one of the significant mechanical properties that are thoroughly used to assess the landslide and liquefaction potentiality of the soil.
基金Project(50809023)supported by the National Natural Science Foundation of ChinaProject(2015B17714)supported by the Fundamental Research Funds for Central Universities,China
文摘Series of testing on coarse grained soils were carried out with a true triaxial testing apparatus. The loads were applied from the major principal and minor principal directions, respectively, to simulate the construction and water impounding process of a rock fill dam. The stress and strain relationships induced by the different loading methods were investigated. A remarkable stress-induced anisotropy under complex stress state was observed. Contrary to popular assumptions in traditional numerical analysis and constitutive models, it was found that different elastic modulus and Poisson ratio exist in different principal directions in rock fill dams. From the testing results, an anisotropic constitutive model based on Duncan-Chang nonlinear model is presented to overcome the limitations of axi-symmetric assumptions in conventional triaxial experiments and constitutive models. Both models were then applied in FEM analysis of an under-construction earth core high rock soil filled dam with the focus on hydraulic fracturing. The study reveals the major biases that exist when numerical analysis and constitutive models do not give serious consideration to the intermediate principal stress and anisotropy effects in soil rock built structures.