The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-orde...The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.展开更多
In this paper, the theory of the free wobble of the triaxial Earth is developed and new conclusions are drawn: the Euler period should be actually expressed by the first kind of complete elliptic integral; the trace o...In this paper, the theory of the free wobble of the triaxial Earth is developed and new conclusions are drawn: the Euler period should be actually expressed by the first kind of complete elliptic integral; the trace of the free polar motion is elliptic and the orientations of its semi-minor and major axes are approximately parallel to the Earth's principal axes A and B, respectively. In addition, the present theory shows that there is a mechanism of frequency-amplitude modulation in the Chandler wobble, which might be a candidate for explaining the correlation between the amplitude and period of the Chandler wobble.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51325502 and 51405175)the National Basic Research Program of China("973"Project)(Grant No.2011CB706804)the National Science and Technology Major Projects of China(Grant No.2012ZX04001-012-01-05)
文摘The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.
基金Supported by the Special Project Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (China)the Engagement Fund of Outstanding Doctoral Dissertation of Wuhan University (No.22)+1 种基金the Ph.D. Candidates Self-research (including 1+4) Program of Wu-han Unversity in 2008 (No.49)the Open Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education,China (No.08-02-02)
文摘In this paper, the theory of the free wobble of the triaxial Earth is developed and new conclusions are drawn: the Euler period should be actually expressed by the first kind of complete elliptic integral; the trace of the free polar motion is elliptic and the orientations of its semi-minor and major axes are approximately parallel to the Earth's principal axes A and B, respectively. In addition, the present theory shows that there is a mechanism of frequency-amplitude modulation in the Chandler wobble, which might be a candidate for explaining the correlation between the amplitude and period of the Chandler wobble.