An acrylic acid/kaoline powder superabsorbent composite with a water absorbency of the superabsorbent composite about 1/800 was synthesized by inverse\|suspending polymerization reaction between acrylic acid monomer a...An acrylic acid/kaoline powder superabsorbent composite with a water absorbency of the superabsorbent composite about 1/800 was synthesized by inverse\|suspending polymerization reaction between acrylic acid monomer and kaoline ultrafine powder. The influence of the dispersant agent on the configuration of the products in the inverse suspension polymerization is investigated. The influences of the kaoline powder,cross\|linker,initiator,neutralization degree and the volume ratio of oil to water phase on the water absorbency of the superabsorbent composites are discussed in the paper.展开更多
Microcrystal muscovite composite superabsorbents(MMCSA) were prepared by water solution polymerization using acrylic acid, acrylamide and itaconic acid as comonomers and microcrystal muscovite as an inorganic additi...Microcrystal muscovite composite superabsorbents(MMCSA) were prepared by water solution polymerization using acrylic acid, acrylamide and itaconic acid as comonomers and microcrystal muscovite as an inorganic additive. Properties, such as water absorbency, salt absorbency, gel strength, water retention capacity and structure of MMCSA characterized by SEM and XRD, were investigated. Water absorbency, salt absorbency, gel strength, water retention capacity and thermostability were enhanced by incorporation of suitable amount of microcrystal muscovite. Water absorption of MMCSA was rapid, requiring 24.55 min to reach 63% of equilibrium absorbency(1218 g/g). Microcrystal muscovite was physically combined into the polymeric network without destroying its polycrystalline structure and microcrystal muscovite composite superabsorbent had some irregular, undulant, and small microporous holes with sheet-like microcrystal muscovite distributed in the polymeric matrix.展开更多
In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigate...In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigated. Theuniaxial tensile test, the four-point bending test, thecompressive test, the drying shrinkage test and theenvironmental scanning electron microscope (ESEM) wereemployed to investigate the tensile strain capacity, flexuraldeformation capacity, compressive strength, drying shrinkage,crack width and self-healing of SHCC. The experimentalresults show that SHCC modified with SAP particles exhibitsexcellent ductility and deformability, and the tensile strain isup to about 4.5% and the average crack width is controlledaround 40 μm. Meanwhile, the drying shrinkage of SHCCmodified with SAP particles can reduce by about 60%.Furthermore, the self-healing behavior is observed in thecracks of specimen after three cycles of high-low relativehumidity curing, and the self-healing products can completelyfill the cracks of SHCC specimens modified with SAPparticles. It is, therefore, feasible to produce SHCC materialmodified with SAP particles, while simultaneously retaininghigher material ductility.展开更多
Majority of superabsorbent polymers (SAPs) yet reported either have low gel strength or high production cost. Therefore, we synthesized a novel polyacrylic acid-grafted China clay (Kaolinite) super-absorbent polymer c...Majority of superabsorbent polymers (SAPs) yet reported either have low gel strength or high production cost. Therefore, we synthesized a novel polyacrylic acid-grafted China clay (Kaolinite) super-absorbent polymer composite (SAPC) with high thermal stability, low cost of production and superior sorption and retention capability for water and salt solution. The resulting SAPCs were extensively characterized and analysed by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results suggested that the composites were thermally stable. Water absorbency increased with increase of clay content up to 45%, while further increase in clay content decreased the water absorbency. Percentage of acrylic acid (AA) and clay by weight shows the optimum absorbency in 35% and 40% respectively. Crosslinker and initiator contents were optimized to be 0.5% and 0.3% by weight respectively. The resulting polymer composite showed high water absorbency of about 785 g/g and 103 g/g of 1% NaCl solution with above 90% retention ability at 50 oC.展开更多
In order to improve the self-healing behavior and the recovery of mechanical properties of engineered cementitious composites(ECC),the approach of incorporating superabsorbent polymer(SAP)in mixtures is investigated.T...In order to improve the self-healing behavior and the recovery of mechanical properties of engineered cementitious composites(ECC),the approach of incorporating superabsorbent polymer(SAP)in mixtures is investigated.The rapid water penetration test and four-point bending test were conducted to evaluate the effects of self-healing on the water permeability and mechanical properties of pre-damaged ECC.The self-healing process and self-healing products were observed by the environment scanning electron microscope(ESEM)and energy dispersive X-ray spectroscopy(EDS).The experimental results show that all ECC mixtures exhibit excellent flexural capacity,meanwhile maintaining a crack width below 50μm.The incorporation of SAP particles in ECC can apparently improve the mechanical recovery of ECC mixtures after 10 healing curing cycles,such as flexural deformation and flexural stiffness.The flexural stiffness of ECC containing 4%SAP particles after self-healing can be recovered to 80%.The self-healing test results show that when the water permeability of ECC mixtures incorporating SAP particles is close to zero,only three healing cycles are needed.When ECC incorpora ting more SAP particles,the accelerated self-healing process can be finished in the first three cycles,and self-healing product is mixed Ca(OH)2/CaCO 3 with CaCO 3 being a major component in the later stage.It is,therefore,feasible to produce ECC materials incorporating SAP particles,while simultaneously maintaining higher material ductility and self-healing behavior.展开更多
Organo-attapulgite was obtained by modifying attapulgite with hexadecyltrimethyl ammonium bromide.A new organo-attapulgite based superabsorbent composite was prepared by polymerization of organo-attapulgite dispersed ...Organo-attapulgite was obtained by modifying attapulgite with hexadecyltrimethyl ammonium bromide.A new organo-attapulgite based superabsorbent composite was prepared by polymerization of organo-attapulgite dispersed acrylamide,using N,N′-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator.The structure,morphology,thermal stability of organo-attapulgite and the composite were characterized by FTIR,XRD,SEM,TEM and TGA,respectively.The results indicated that a nanocomposite was successfully obtained after incorporating organo-attapulgite into the polyacrylamide network.The thermal stability and water absorbency of the nanocomposite were improved greatly after the organification of attapulgite.Water absorbencies for the nanocomposite incorporated with 10 wt% HDTMA-APT in distilled water and in a 0.9 wt% NaCl solution were 2803 g g -1 and 121 g g -1,respectively.展开更多
文摘An acrylic acid/kaoline powder superabsorbent composite with a water absorbency of the superabsorbent composite about 1/800 was synthesized by inverse\|suspending polymerization reaction between acrylic acid monomer and kaoline ultrafine powder. The influence of the dispersant agent on the configuration of the products in the inverse suspension polymerization is investigated. The influences of the kaoline powder,cross\|linker,initiator,neutralization degree and the volume ratio of oil to water phase on the water absorbency of the superabsorbent composites are discussed in the paper.
基金Funded by the Sichuan Provincial Science & Technology Pillar Program,China(2010GZ0128)the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Cheng du University of Technology,China(SKLGP2012K004)
文摘Microcrystal muscovite composite superabsorbents(MMCSA) were prepared by water solution polymerization using acrylic acid, acrylamide and itaconic acid as comonomers and microcrystal muscovite as an inorganic additive. Properties, such as water absorbency, salt absorbency, gel strength, water retention capacity and structure of MMCSA characterized by SEM and XRD, were investigated. Water absorbency, salt absorbency, gel strength, water retention capacity and thermostability were enhanced by incorporation of suitable amount of microcrystal muscovite. Water absorption of MMCSA was rapid, requiring 24.55 min to reach 63% of equilibrium absorbency(1218 g/g). Microcrystal muscovite was physically combined into the polymeric network without destroying its polycrystalline structure and microcrystal muscovite composite superabsorbent had some irregular, undulant, and small microporous holes with sheet-like microcrystal muscovite distributed in the polymeric matrix.
基金The National Natural Science Foundation of China(No.51278097)Start-up Grant provided by Nanyang Technological University(No.M4081208)
文摘In order to improve the tensile property, flexuralproperty and drying shrinkage of strain-hardening cementitiouscomposites (SHCC), mixtures quantitatively modified withsuperabsorbent polymer (SAP) were investigated. Theuniaxial tensile test, the four-point bending test, thecompressive test, the drying shrinkage test and theenvironmental scanning electron microscope (ESEM) wereemployed to investigate the tensile strain capacity, flexuraldeformation capacity, compressive strength, drying shrinkage,crack width and self-healing of SHCC. The experimentalresults show that SHCC modified with SAP particles exhibitsexcellent ductility and deformability, and the tensile strain isup to about 4.5% and the average crack width is controlledaround 40 μm. Meanwhile, the drying shrinkage of SHCCmodified with SAP particles can reduce by about 60%.Furthermore, the self-healing behavior is observed in thecracks of specimen after three cycles of high-low relativehumidity curing, and the self-healing products can completelyfill the cracks of SHCC specimens modified with SAPparticles. It is, therefore, feasible to produce SHCC materialmodified with SAP particles, while simultaneously retaininghigher material ductility.
文摘Majority of superabsorbent polymers (SAPs) yet reported either have low gel strength or high production cost. Therefore, we synthesized a novel polyacrylic acid-grafted China clay (Kaolinite) super-absorbent polymer composite (SAPC) with high thermal stability, low cost of production and superior sorption and retention capability for water and salt solution. The resulting SAPCs were extensively characterized and analysed by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results suggested that the composites were thermally stable. Water absorbency increased with increase of clay content up to 45%, while further increase in clay content decreased the water absorbency. Percentage of acrylic acid (AA) and clay by weight shows the optimum absorbency in 35% and 40% respectively. Crosslinker and initiator contents were optimized to be 0.5% and 0.3% by weight respectively. The resulting polymer composite showed high water absorbency of about 785 g/g and 103 g/g of 1% NaCl solution with above 90% retention ability at 50 oC.
基金The National Natural Science Foundation of China(No.51278097)Start-up Grant Provided by Nanyang Technological University(No.M4081208)
文摘In order to improve the self-healing behavior and the recovery of mechanical properties of engineered cementitious composites(ECC),the approach of incorporating superabsorbent polymer(SAP)in mixtures is investigated.The rapid water penetration test and four-point bending test were conducted to evaluate the effects of self-healing on the water permeability and mechanical properties of pre-damaged ECC.The self-healing process and self-healing products were observed by the environment scanning electron microscope(ESEM)and energy dispersive X-ray spectroscopy(EDS).The experimental results show that all ECC mixtures exhibit excellent flexural capacity,meanwhile maintaining a crack width below 50μm.The incorporation of SAP particles in ECC can apparently improve the mechanical recovery of ECC mixtures after 10 healing curing cycles,such as flexural deformation and flexural stiffness.The flexural stiffness of ECC containing 4%SAP particles after self-healing can be recovered to 80%.The self-healing test results show that when the water permeability of ECC mixtures incorporating SAP particles is close to zero,only three healing cycles are needed.When ECC incorpora ting more SAP particles,the accelerated self-healing process can be finished in the first three cycles,and self-healing product is mixed Ca(OH)2/CaCO 3 with CaCO 3 being a major component in the later stage.It is,therefore,feasible to produce ECC materials incorporating SAP particles,while simultaneously maintaining higher material ductility and self-healing behavior.
文摘Organo-attapulgite was obtained by modifying attapulgite with hexadecyltrimethyl ammonium bromide.A new organo-attapulgite based superabsorbent composite was prepared by polymerization of organo-attapulgite dispersed acrylamide,using N,N′-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator.The structure,morphology,thermal stability of organo-attapulgite and the composite were characterized by FTIR,XRD,SEM,TEM and TGA,respectively.The results indicated that a nanocomposite was successfully obtained after incorporating organo-attapulgite into the polyacrylamide network.The thermal stability and water absorbency of the nanocomposite were improved greatly after the organification of attapulgite.Water absorbencies for the nanocomposite incorporated with 10 wt% HDTMA-APT in distilled water and in a 0.9 wt% NaCl solution were 2803 g g -1 and 121 g g -1,respectively.