This paper presents a new kind of uniform spline curve, named trigonometric polynomial B-splines, over space Ω = span{sini,cost, tk-3,tk-4, …,t, 1} of which k is an arbitrary integer larger than or equal to 3. We sh...This paper presents a new kind of uniform spline curve, named trigonometric polynomial B-splines, over space Ω = span{sini,cost, tk-3,tk-4, …,t, 1} of which k is an arbitrary integer larger than or equal to 3. We show that trigonometric polynomial B-spline curves have many similar properties to traditional B-splines. Based on the explicit representation of the curve we have also presented the subdivision formulae for this new kind of curve. Since the new spline can include both polynomial curves and trigonometric curves as special cases without rational form, it can be used as an efficient new model for geometric design in the fields of CAD/CAM.展开更多
Let tn(x) be any real trigonometric polynomial of degreen n such that , Here we are concerned with obtaining the best possible upper estimate ofwhere q>2. In addition, we shall obtain the estimate of in terms of and
In this paper, we continue studying the so called best m-term one-sided approximation and Greedy-liked one-sided ap- proximation by the trigonometric polynomials. The asymptotic estimations of the best m-terms one-sid...In this paper, we continue studying the so called best m-term one-sided approximation and Greedy-liked one-sided ap- proximation by the trigonometric polynomials. The asymptotic estimations of the best m-terms one-sided approximation by the trigonometric polynomials on some classes of Besov spaces in the metricLp(Td(1≤p≤∞ are given.展开更多
A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are sup...A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others. It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞ +∞) as n→ ∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n^2r+4.展开更多
In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-s...In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.展开更多
A class of cubic trigonometric interpolation spline curves with two parameters is presented in this paper. The spline curves can automatically interpolate the given data points and become C^2 interpolation curves with...A class of cubic trigonometric interpolation spline curves with two parameters is presented in this paper. The spline curves can automatically interpolate the given data points and become C^2 interpolation curves without solving equations system even if the interpolation conditions are fixed. Moreover, shape of the interpolation spline curves can be globally adjusted by the two parameters. By selecting proper values of the two parameters,the optimal interpolation spline curves can be obtained.展开更多
For any fixed ε > 0, an explicit construction of anorthonormal trigonometric polynomial basis {Tk}∞k=1 inL2 [0,1) with degTk≤ 0.5(1 +ε)k is presented. Thus weimprove the results obtained by D. Offin and K. Osko...For any fixed ε > 0, an explicit construction of anorthonormal trigonometric polynomial basis {Tk}∞k=1 inL2 [0,1) with degTk≤ 0.5(1 +ε)k is presented. Thus weimprove the results obtained by D. Offin and K. Oskolkov in [4] and by Al. A. Privalov in [6]. and practically solve the open problemasked in [4], [8] and [9]. Moreover, as in [4], Fourier sums with respectto this polynomial basis are projectors onto subspaces of trigonometricpolynomials of high degree, which implies almost best approximation- properties.展开更多
Convergence acceleration of the classical trigonometric interpolation by the Eckhoff method is considered, where the exact values of the "jumps" are approximated by solution of a system of linear equations. The accu...Convergence acceleration of the classical trigonometric interpolation by the Eckhoff method is considered, where the exact values of the "jumps" are approximated by solution of a system of linear equations. The accuracy of the "jump" approximation is explored and the corresponding asymptotic error of interpolation is derived. Numerical results validate theoretical estimates.展开更多
Here presented is constructive generalization of exponential Euler polynomial and exponential splines based on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian ...Here presented is constructive generalization of exponential Euler polynomial and exponential splines based on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian fractions and the set of concepts related to spline functions. The applications of generalized exponential Euler polynomials in series transformations and expansions are also given.展开更多
In computer aided geometric design(CAGD),the Bernstein-Bézier system for polynomial space including the triangular domain is an important tool for modeling free form shapes.The Bernstein-like bases for other spac...In computer aided geometric design(CAGD),the Bernstein-Bézier system for polynomial space including the triangular domain is an important tool for modeling free form shapes.The Bernstein-like bases for other spaces(trigonometric polynomial,hyperbolic polynomial,or blended space) has also been studied.However,none of them was extended to the triangular domain.In this paper,we extend the linear trigonometric polynomial basis to the triangular domain and obtain a new Bernstein-like basis,which is linearly independent and satisfies positivity,partition of unity,symmetry,and boundary represen-tation.We prove some properties of the corresponding surfaces,including differentiation,subdivision,convex hull,and so forth.Some applications are shown.展开更多
Let an, n≥ 1 be a sequence of independent standard normal random variables. Consider the randomtrigonometric polynomial Tn(θ)=∑^n_i=1 aj cos(j θ), 0≤θ≤π and let Nn be the number of real roots of Tn(θ)in...Let an, n≥ 1 be a sequence of independent standard normal random variables. Consider the randomtrigonometric polynomial Tn(θ)=∑^n_i=1 aj cos(j θ), 0≤θ≤π and let Nn be the number of real roots of Tn(θ)in (0, 2π). In this paper it is proved that limn→∞ Var(Nn)/n=co,where 0 〈 co〈 ∞.展开更多
Estimating the number of isolated roots of a polynomial system is not only a fundamental study theme in algebraic geometry but also an important subproblem of homotopy methods for solving polynomial systems. For the m...Estimating the number of isolated roots of a polynomial system is not only a fundamental study theme in algebraic geometry but also an important subproblem of homotopy methods for solving polynomial systems. For the mixed trigonometric polynomial systems, which are more general than polynomial systems and rather frequently occur in many applications, the classical B6zout number and the multihomogeneous Bezout number are the best known upper bounds on the number of isolated roots. However, for the deficient mixed trigonometric polynomial systems, these two upper bounds are far greater than the actual number of isolated roots. The BKK bound is known as the most accurate upper bound on the number of isolated roots of a polynomial system. However, the extension of the definition of the BKK bound allowing it to treat mixed trigonometric polynomial systems is very difficult due to the existence of sine and cosine functions. In this paper, two new upper bounds on the number of isolated roots of a mixed trigonometric polynomial system are defined and the corresponding efficient algorithms for calculating them are presented. Numerical tests are also given to show the accuracy of these two definitions, and numerically prove they can provide tighter upper bounds on the number of isolated roots of a mixed trigonometric polynomial system than the existing upper bounds, and also the authors compare the computational time for calculating these two upper bounds.展开更多
We show that the zeros of a trigonometric polynomial of degree N with the usual(2N+1)terms can be calculated by computing the eigenvalues of a matrix of dimension 2N with real-valued elements M_(jk).This matrix M is a...We show that the zeros of a trigonometric polynomial of degree N with the usual(2N+1)terms can be calculated by computing the eigenvalues of a matrix of dimension 2N with real-valued elements M_(jk).This matrix M is a multiplication matrix in the sense that,after first defining a vector φwhose elements are the first 2N basis functions,Mφ=2cos(t)φ.This relationship is the eigenproblem;the zeros tk are the arccosine function of λ_(k)/2 where theλk are the eigenvalues of M.We dub this the“Fourier Division Companion Matrix”,or FDCM for short,because it is derived using trigonometric polynomial division.We show through examples that the algorithm computes both real and complex-valued roots,even double roots,to near machine precision accuracy.展开更多
Knot insertion algorithm is one of the most important technologies of B-spline method. By inserting a knot the local prop- erties of B-spline curve and the control flexibility of its shape can be fiu'ther improved, a...Knot insertion algorithm is one of the most important technologies of B-spline method. By inserting a knot the local prop- erties of B-spline curve and the control flexibility of its shape can be fiu'ther improved, also the segmentation of the curve can be rea- lized. ECT spline curve is drew by the multi-knots spline curve with associated matrix in ECT spline space; Muehlbach G and Tang Y and many others have deduced the existence and uniqueness of the ECT spline function and developed many of its important properties .This paper mainly focuses on the knot insertion algorithm of ECT B-spline curve.It is the widest popularization of B-spline Behm algorithm and theory. Inspired by the Behm algorithm, in the ECT spline space, structure of generalized P61ya poly- nomials and generalized de Boor Fix dual functional, expressing new control points which are inserted after the knot by linear com- bination of original control vertex the single knot, and there are two cases, one is the single knot, the other is the double knot. Then finally comes the insertion algorithm of ECT spline curve knot. By application of the knot insertion algorithm, this paper also gives out the knot insertion algorithm of four order geometric continuous piecewise polynomial B-spline and algebraic trigonometric spline B-spline, which is consistent with previous results.展开更多
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 19971079) and Foundation of State Key Basic Research 973 Development Programming Item (Grant No. G1998030600).
文摘This paper presents a new kind of uniform spline curve, named trigonometric polynomial B-splines, over space Ω = span{sini,cost, tk-3,tk-4, …,t, 1} of which k is an arbitrary integer larger than or equal to 3. We show that trigonometric polynomial B-spline curves have many similar properties to traditional B-splines. Based on the explicit representation of the curve we have also presented the subdivision formulae for this new kind of curve. Since the new spline can include both polynomial curves and trigonometric curves as special cases without rational form, it can be used as an efficient new model for geometric design in the fields of CAD/CAM.
文摘Let tn(x) be any real trigonometric polynomial of degreen n such that , Here we are concerned with obtaining the best possible upper estimate ofwhere q>2. In addition, we shall obtain the estimate of in terms of and
文摘In this paper, we continue studying the so called best m-term one-sided approximation and Greedy-liked one-sided ap- proximation by the trigonometric polynomials. The asymptotic estimations of the best m-terms one-sided approximation by the trigonometric polynomials on some classes of Besov spaces in the metricLp(Td(1≤p≤∞ are given.
文摘A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others. It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞ +∞) as n→ ∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n^2r+4.
文摘In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.
基金supported by the National Natural Science Foundation of China(11171181)the Scientific Research Fund of Hunan Provincial Education Department of China(14B099)
文摘A class of cubic trigonometric interpolation spline curves with two parameters is presented in this paper. The spline curves can automatically interpolate the given data points and become C^2 interpolation curves without solving equations system even if the interpolation conditions are fixed. Moreover, shape of the interpolation spline curves can be globally adjusted by the two parameters. By selecting proper values of the two parameters,the optimal interpolation spline curves can be obtained.
文摘For any fixed ε > 0, an explicit construction of anorthonormal trigonometric polynomial basis {Tk}∞k=1 inL2 [0,1) with degTk≤ 0.5(1 +ε)k is presented. Thus weimprove the results obtained by D. Offin and K. Oskolkov in [4] and by Al. A. Privalov in [6]. and practically solve the open problemasked in [4], [8] and [9]. Moreover, as in [4], Fourier sums with respectto this polynomial basis are projectors onto subspaces of trigonometricpolynomials of high degree, which implies almost best approximation- properties.
基金Supported in part by grant PS 1867 from the Armenian National Science and Education Fund (ANSEF) based in New York, USA
文摘Convergence acceleration of the classical trigonometric interpolation by the Eckhoff method is considered, where the exact values of the "jumps" are approximated by solution of a system of linear equations. The accuracy of the "jump" approximation is explored and the corresponding asymptotic error of interpolation is derived. Numerical results validate theoretical estimates.
文摘Here presented is constructive generalization of exponential Euler polynomial and exponential splines based on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian fractions and the set of concepts related to spline functions. The applications of generalized exponential Euler polynomials in series transformations and expansions are also given.
基金supported by the National Natural Science Foundation of China (Nos.60773179,60933008,and 60970079)the National Basic Research Program (973) of China (No.2004CB318000)the China Hungary Joint Project (No.CHN21/2006)
文摘In computer aided geometric design(CAGD),the Bernstein-Bézier system for polynomial space including the triangular domain is an important tool for modeling free form shapes.The Bernstein-like bases for other spaces(trigonometric polynomial,hyperbolic polynomial,or blended space) has also been studied.However,none of them was extended to the triangular domain.In this paper,we extend the linear trigonometric polynomial basis to the triangular domain and obtain a new Bernstein-like basis,which is linearly independent and satisfies positivity,partition of unity,symmetry,and boundary represen-tation.We prove some properties of the corresponding surfaces,including differentiation,subdivision,convex hull,and so forth.Some applications are shown.
基金supported by National Natural Science Foundation of China (GrantNos. 10671176 and 11071213)Zhejiang Provincial Natural Science Foundation of China (Grant No. R6090034)+1 种基金Doctoral Programs Foundation of Ministry of Education of China (Grant No. J20110031)Competitive Earmarked Research Grant of Research Grants Council (Grant No. 602608)
文摘Let an, n≥ 1 be a sequence of independent standard normal random variables. Consider the randomtrigonometric polynomial Tn(θ)=∑^n_i=1 aj cos(j θ), 0≤θ≤π and let Nn be the number of real roots of Tn(θ)in (0, 2π). In this paper it is proved that limn→∞ Var(Nn)/n=co,where 0 〈 co〈 ∞.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11101067 and 11571061Major Research Plan of the National Natural Science Foundation of China under Grant No.91230103the Fundamental Research Funds for the Central Universities
文摘Estimating the number of isolated roots of a polynomial system is not only a fundamental study theme in algebraic geometry but also an important subproblem of homotopy methods for solving polynomial systems. For the mixed trigonometric polynomial systems, which are more general than polynomial systems and rather frequently occur in many applications, the classical B6zout number and the multihomogeneous Bezout number are the best known upper bounds on the number of isolated roots. However, for the deficient mixed trigonometric polynomial systems, these two upper bounds are far greater than the actual number of isolated roots. The BKK bound is known as the most accurate upper bound on the number of isolated roots of a polynomial system. However, the extension of the definition of the BKK bound allowing it to treat mixed trigonometric polynomial systems is very difficult due to the existence of sine and cosine functions. In this paper, two new upper bounds on the number of isolated roots of a mixed trigonometric polynomial system are defined and the corresponding efficient algorithms for calculating them are presented. Numerical tests are also given to show the accuracy of these two definitions, and numerically prove they can provide tighter upper bounds on the number of isolated roots of a mixed trigonometric polynomial system than the existing upper bounds, and also the authors compare the computational time for calculating these two upper bounds.
基金supported by the National Science Foundation through grant OCE 1059703.
文摘We show that the zeros of a trigonometric polynomial of degree N with the usual(2N+1)terms can be calculated by computing the eigenvalues of a matrix of dimension 2N with real-valued elements M_(jk).This matrix M is a multiplication matrix in the sense that,after first defining a vector φwhose elements are the first 2N basis functions,Mφ=2cos(t)φ.This relationship is the eigenproblem;the zeros tk are the arccosine function of λ_(k)/2 where theλk are the eigenvalues of M.We dub this the“Fourier Division Companion Matrix”,or FDCM for short,because it is derived using trigonometric polynomial division.We show through examples that the algorithm computes both real and complex-valued roots,even double roots,to near machine precision accuracy.
基金Supported by Financially Supported by the NUAA Fundamental Research Funds(No.NZ2013201)
文摘Knot insertion algorithm is one of the most important technologies of B-spline method. By inserting a knot the local prop- erties of B-spline curve and the control flexibility of its shape can be fiu'ther improved, also the segmentation of the curve can be rea- lized. ECT spline curve is drew by the multi-knots spline curve with associated matrix in ECT spline space; Muehlbach G and Tang Y and many others have deduced the existence and uniqueness of the ECT spline function and developed many of its important properties .This paper mainly focuses on the knot insertion algorithm of ECT B-spline curve.It is the widest popularization of B-spline Behm algorithm and theory. Inspired by the Behm algorithm, in the ECT spline space, structure of generalized P61ya poly- nomials and generalized de Boor Fix dual functional, expressing new control points which are inserted after the knot by linear com- bination of original control vertex the single knot, and there are two cases, one is the single knot, the other is the double knot. Then finally comes the insertion algorithm of ECT spline curve knot. By application of the knot insertion algorithm, this paper also gives out the knot insertion algorithm of four order geometric continuous piecewise polynomial B-spline and algebraic trigonometric spline B-spline, which is consistent with previous results.