Background Petrochemical products possess a high risk of flammability,explosivity,and toxicity,making petrochemical accidents exceedingly destructive.Therefore,disaster analysis,prediction,and real-time simulations ha...Background Petrochemical products possess a high risk of flammability,explosivity,and toxicity,making petrochemical accidents exceedingly destructive.Therefore,disaster analysis,prediction,and real-time simulations have become important means of controlling and reducing accident hazards.Methods This study proposes a complete real-time simulation solution of gas diffusion with coordinate and concentration data,which was mainly aimed at simulating the types of harmful gas leakage and diffusion accidents in the petrochemical industry.The rendering effect was more continuous and accurate through grid homogenization and trilinear interpolation.This study presents a data processing and rendering parallelization process to enhance simulation efficiency.Gas concentration and fragment transparency were combined to synthesize transparent pixels in a scene.To ensure the approximate accuracy of the rendering effect,improve the efficiency of real-time rendering,and meet the requirement of intuitive perception using concentration data,a weighted blended order-independent transparency(OIT)with enhanced alpha weight is presented,which can provide a more intuitive perception of the hierarchical information of concentration data while preserving depth information.This study compares and analyzes three OIT algorithms-depth peeling,weighted blended OIT,and weighted blended OIT with enhanced alpha weight-in terms of rendering image quality,rendering time,required memory,and hierarchical information.Results Using weighted blended OIT with an enhanced alpha weight technique,the rendering time was shortened by 53.2%compared with that of the depth peeling algorithm,and the texture memory required was significantly smaller than that of the depth peeling algorithm.The rendering results of weighted blended OIT with an enhanced alpha weight were approximately accurate compared with those of the depth peeling algorithm as the ground truth,and there was no popping when surfaces passed through one another.Simultaneously,compared with weighted blended OIT,weighted blended OIT with an enhanced alpha weight achieved an intuitive perception of the hierarchical information of concentration data.展开更多
This paper presents the development and validation of a fully coupled computational fluid dynamics—discrete element method—volume of fluid(CFD-DEM-VOF)model to simulate the complex behavior of particle-laden flows w...This paper presents the development and validation of a fully coupled computational fluid dynamics—discrete element method—volume of fluid(CFD-DEM-VOF)model to simulate the complex behavior of particle-laden flows with free surfaces.The coupling between the fluid and particle phases is established through the implemented continuity,momentum,and alpha transport equation.The coupled particle forces such as drag,pressure gradient,dense virtual mass,viscous,and interface forces are also integrated,with drag and dense virtual mass forces being dependent on local porosity.The integrated conservative alpha transport equation ensures phase volume conservation during interactions between particles and water.Additionally,we have implemented a trilinear interpolation method designed to operate on unstructured hexahedral meshes.This method has been tested for its ability to properly resolve the coupling effects in the numerical simulations,particularly in cases with a relatively low cell-size ratio.The model is validated through three distinct test cases:single particle water entry,dam break with particles,and water entry of a group of particles case.The experimental setup is built to study the dynamics of the water entry of a group of particles,where three key flow features are analyzed:the evolution of average particle velocity,cavity shape,and particle dispersion cloud profiles in water.The tests involve four different scenarios,including two different water levels(16.1 and 20.1 cm)and two different particle densities(2650 and 4000 kg/m3).High-speed videometry and particle tracking velocimetry(using ImageJ/TrackMate)methods are employed for experimental data acquisition.It is demonstrated that numerical results are in excellent agreement with theoretical predictions and experimental data.The study highlights the significance of vortices in cavity shaping and particle dispersion.The validated CFD-DEM-VOF model constitutes a robust tool for simulating particle-laden flows,contributing valuable insights into the complex interplay between particles and fluids.展开更多
基金Supported by National Key R&D Program of China (2020YFB1710400)。
文摘Background Petrochemical products possess a high risk of flammability,explosivity,and toxicity,making petrochemical accidents exceedingly destructive.Therefore,disaster analysis,prediction,and real-time simulations have become important means of controlling and reducing accident hazards.Methods This study proposes a complete real-time simulation solution of gas diffusion with coordinate and concentration data,which was mainly aimed at simulating the types of harmful gas leakage and diffusion accidents in the petrochemical industry.The rendering effect was more continuous and accurate through grid homogenization and trilinear interpolation.This study presents a data processing and rendering parallelization process to enhance simulation efficiency.Gas concentration and fragment transparency were combined to synthesize transparent pixels in a scene.To ensure the approximate accuracy of the rendering effect,improve the efficiency of real-time rendering,and meet the requirement of intuitive perception using concentration data,a weighted blended order-independent transparency(OIT)with enhanced alpha weight is presented,which can provide a more intuitive perception of the hierarchical information of concentration data while preserving depth information.This study compares and analyzes three OIT algorithms-depth peeling,weighted blended OIT,and weighted blended OIT with enhanced alpha weight-in terms of rendering image quality,rendering time,required memory,and hierarchical information.Results Using weighted blended OIT with an enhanced alpha weight technique,the rendering time was shortened by 53.2%compared with that of the depth peeling algorithm,and the texture memory required was significantly smaller than that of the depth peeling algorithm.The rendering results of weighted blended OIT with an enhanced alpha weight were approximately accurate compared with those of the depth peeling algorithm as the ground truth,and there was no popping when surfaces passed through one another.Simultaneously,compared with weighted blended OIT,weighted blended OIT with an enhanced alpha weight achieved an intuitive perception of the hierarchical information of concentration data.
基金Sepro Mineral Systems through the Mitacs Accelerate project No:IT12396.We would also like to express our appreciation to Compute Canada and UBC ARC for supporting PIME Lab by granting us access to their high-performance computing platforms.The simulations presented in this work were conducted using the Compute Canada Beluga and UBC ARC Sockeye clusters,both of which contributed equally to the computational resources utilized.
文摘This paper presents the development and validation of a fully coupled computational fluid dynamics—discrete element method—volume of fluid(CFD-DEM-VOF)model to simulate the complex behavior of particle-laden flows with free surfaces.The coupling between the fluid and particle phases is established through the implemented continuity,momentum,and alpha transport equation.The coupled particle forces such as drag,pressure gradient,dense virtual mass,viscous,and interface forces are also integrated,with drag and dense virtual mass forces being dependent on local porosity.The integrated conservative alpha transport equation ensures phase volume conservation during interactions between particles and water.Additionally,we have implemented a trilinear interpolation method designed to operate on unstructured hexahedral meshes.This method has been tested for its ability to properly resolve the coupling effects in the numerical simulations,particularly in cases with a relatively low cell-size ratio.The model is validated through three distinct test cases:single particle water entry,dam break with particles,and water entry of a group of particles case.The experimental setup is built to study the dynamics of the water entry of a group of particles,where three key flow features are analyzed:the evolution of average particle velocity,cavity shape,and particle dispersion cloud profiles in water.The tests involve four different scenarios,including two different water levels(16.1 and 20.1 cm)and two different particle densities(2650 and 4000 kg/m3).High-speed videometry and particle tracking velocimetry(using ImageJ/TrackMate)methods are employed for experimental data acquisition.It is demonstrated that numerical results are in excellent agreement with theoretical predictions and experimental data.The study highlights the significance of vortices in cavity shaping and particle dispersion.The validated CFD-DEM-VOF model constitutes a robust tool for simulating particle-laden flows,contributing valuable insights into the complex interplay between particles and fluids.