The properties of trimethyl phosphate(TMP)-based nonflammable electrolytes with LiPF6 as solute were investigated using graphite anode and LiCoO2 cathode. The effect of TMP on non-flammability of electrolytes was al...The properties of trimethyl phosphate(TMP)-based nonflammable electrolytes with LiPF6 as solute were investigated using graphite anode and LiCoO2 cathode. The effect of TMP on non-flammability of electrolytes was also evaluated. It is found that the TMP reduction decomposition on graphite electrode at the potential of 1.3V (vs Li/Li+) is suppressed with ethylene carbonate(EC), dimethyl carbonate(DMC) and ethylmethyl carbonate(EMC) cosolvents and vinylene carbonate(VC) additives. The results show that the non-flammable electrolyte of 1mol/L LiPF6 61%(EC1.5-DMC1.0-EMC1.0)-39% TMP has good electrochemical properties. The discharge capacities of half-cells after 20 cycles are 254.8mA·h/g for Li/graphite and 144.1mA·h/g for Li/LiCoO2. The (graphite/)(LiCoO2) prismatic lithium-ion cell delivers a discharge capacity of 131mA·h/g at first cycle. With an addition of 4%VC to this non-flammable electrolyte, a discharge capacity of 134mA·h/g at first cycle and a capacity ratio of (84.3%) after 50 cycles are obtained for prismatic lithium-ion batteries. Furthermore, a nail penetration test demonstrates that the safety of prismatic lithium-ion batteries is dramatically improved by using TMP-containing (non-)(flammable) electrolytes.展开更多
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h...The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries.展开更多
Vanadium (III) phosphate monoclinic VPO4·H2O was synthesized hydrothermally. The ε-VOPO4 nanosheets, formed by the oxidative de-intercalation of protons from monoclinic VPO4·H2O, can reversibly react wit...Vanadium (III) phosphate monoclinic VPO4·H2O was synthesized hydrothermally. The ε-VOPO4 nanosheets, formed by the oxidative de-intercalation of protons from monoclinic VPO4·H2O, can reversibly react with more than 1 mol lithium atoms in two steps. Crystal XRD analysis revealed that the structure of the ε-VOPO4 nanosheets is monoclinic with lattice parameters of α=7.2588(4) A, b=6.8633(2) A and c=7.2667(4) A. The results show that the ε-VOPO4 nanosheets have a thickness of 200 nm and uniform crystallinity. Electrochemical characterization of the ε-VOPO4 monoclinic nanosheets reveals that they have good electrochemical properties at high current density, and deliver high initial capacity of 230.3 mA· h/g at a current density of 0.09 mA/cm2. Following the first charge cycle, reversible electrochemical lithium extraction/insertion at current density of 0.6 mA/cm2 affords a capacity retention rate of 73.6% (2.0?4.3 V window) that is stable for at least 1000 cycles.展开更多
The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement...The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The XRD results reveal that a small amount of Mg2+ doping into Li sites does not significantly change the monoclinic structure of Li3V2(PO4)3, but Mg-doped Li3W2(PO4)3 has larger cell volume than the pristine Li3V2(PO4)3. All Mg-doped composites display better electrochemical performance than the pristine one, and Liz.94Mgo.03Vz(P04)3/C composite exhibits the highest capacity and the best cycle performance among all above-mentioned composites. The analysis of Li+ diffusion coefficients in Li3V2(PO4)3/C and Li2.94Mgo.03V2(P04)3/C indicates that rapid Li+ diffusion results from the doping of Mg2+ and the rapid Li+ diffusion is responsible for the better electrochemical performance of Mg-doped Li3V2(PO4)3/C composite cathode materials.展开更多
The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron pho...The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application.展开更多
This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the compos...This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon.展开更多
Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) wi...Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePOand directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePOnanorods with the reducing crystal size along the b axis shorten the diffusion distance of Liextraction/insertion, and thus improve the electrochemical properties of LiFePOnanorods. Such prepared LiFePOnanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePOnanorods is supposed to be ascribed to the fast Lidiffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra).展开更多
The polyvinyl carbonate(PVC)polymer solid electrolyte can be in-situ generated in the assembled lithium-ion battery(LIBs);however,its rigid characteristic leads to uneven interface contact between electrolyte and elec...The polyvinyl carbonate(PVC)polymer solid electrolyte can be in-situ generated in the assembled lithium-ion battery(LIBs);however,its rigid characteristic leads to uneven interface contact between electrolyte and electrodes.In this work,trimethyl phosphate(TMP)is introduced into the precursor solution for in-situ generation of flexible PVC solid electrolyte to improve the interfacial contact of elec-trolyte and electrodes together with ionic conductivity.The PVC-TMP electrolyte exhibits good interface compatibility with the lithium metal anode,and the lithium symmetric battery based on PVC-TMP electrolyte shows no obvious polarization within 1000 h cycle.As a consequence,the initial interfacial resistance of battery greatly decreases from 278Ω(LiFePO_(4)(LFP)/PVC/Li)to 93Ω(LFP/PVC-TMP/Li)at 50℃,leading to an improved cycling stability of the LFP/PVC-TMP/Li battery.Such in-situ preparation of solid electrolyte within the battery is demonstrated to be very significant for commercial application.展开更多
The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the ...The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the properties of Li3V2(PO4)3/C were evaluated by X-ray diffraction(XRD), scanning electron microscope(SEM) and electrochemical performance tests. The SEM images show that smaller size particles are obtained by adding larger and smaller PEGs. The electrochemical cycling of Li3V2(PO4)3/C prepared by both PEG200 and PEG20 k has a high initial discharge capacity of 131.1 mA·h/g at 0.1C during 3.0-4.2 V, and delivers a reversible discharge capacity of 123.6 m A·h/g over 30 cycles, which is better than that of other samples. The improvement in electrochemical performance is caused by its improved lithium ion diffusion coefficient for the macroporous morphology, which is verified by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).展开更多
Carbon-coated LiFePO_4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer...Carbon-coated LiFePO_4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy(EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO_4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C(1.0C = 170 mA ·g^-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mA h·g^-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mA h·g^-1, even at 2C.展开更多
Using solid-state synthesis method,a series of samples of lanthanum doped Li1-xLaxFePO4(x=0.0025,0.005,0.0075,0.01) were prepared.Each cathode structural and electrochemical properties were investigated using X-ray di...Using solid-state synthesis method,a series of samples of lanthanum doped Li1-xLaxFePO4(x=0.0025,0.005,0.0075,0.01) were prepared.Each cathode structural and electrochemical properties were investigated using X-ray diffractometry(XRD),scanning electron microscopy(SEM),electrochemical impedance spectroscopy(EIS) and charge/discharge cycling.Nanopowders material with single-phase could be obtained.The reversible capacity could be drastically improved by the introduction of La.The optimum cells with Li0.99La0....展开更多
As a potential substitute for LiFePO4, LiMnPO4 has attracted more and more attention due to its higher energy, showing potential application in electric vehicle(EV) or hybrid electric vehicle(HEV). In this work,so...As a potential substitute for LiFePO4, LiMnPO4 has attracted more and more attention due to its higher energy, showing potential application in electric vehicle(EV) or hybrid electric vehicle(HEV). In this work,solvothermal method was used to prepare nano-sized LiMnPO4, where ethylene glycol was used as solvent, and lithium acetate(LiAc), phosphoric acid(H3 PO4) and manganese chloride(MnCl2) were used as precursors. The crystal structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The electrochemical performance was evaluated by charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the molar ratio of LiAc:H3 PO4:MnCl2 plays a critical role in directing the morphology of LiMnPO4. Large plates transform into irregular nanoparticles when the molar ratio changes from 2:1:1 to 6:1:1. After carbon coating, the product prepared from the 6:1:1 precursor could deliver discharge capacities of 156.9,122.8, and 89.7 mAhg-1 at 0.05 C, 1 C and 10 C, respectively.The capacity retention can be maintained at 85.1% after 200 cycles at 1 C rate for this product.展开更多
Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries.But,similar to other transition metal oxides(TMOs),it is al...Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries.But,similar to other transition metal oxides(TMOs),it is also affected by large volume changes and inferior kinetics during redox reactions,resulting in the destruction of the crystal structure and poor electrochemical performance.Here,Fe_(3)O_(4)/C nanospheres anchored on the two-dimensional graphene oxide as precursors are phosphated and sintered to build the multiphasic nanocomposite.XRD results confirmed the multiphasic nanocomposite composed of Fe2O3,Fe_(3)O_(4) and Fe_(3)PO_(7),which will facilitate the Li+diffusion.And the carbonaceous matrix will buffer the volume changes and enhance electron conduction.Consequently,the multiphasic Febased anode delivers a large specific capacity of 1086 mAh/g with a high initial Coulombic efficiency of 87%at 0.1 C.It also has excellent cycling stability and rate property,maintaining a capacity retention of~87%after 300 cycles and a high reversible capacity of 632 mAh/g at 10 C.The proposed multiphasic structure offers a new insight into improving the electrochemical properties of TMO-based anodes for advanced alkali-ion batteries.展开更多
Phosphate material LiMnPO4 is popular for its high energy density(697 W·h·kg^(-1))and safety.When LiMnPO_(4) crystal grows,the potential barrier along b and c axis is strong,which makes the crystal grow alon...Phosphate material LiMnPO4 is popular for its high energy density(697 W·h·kg^(-1))and safety.When LiMnPO_(4) crystal grows,the potential barrier along b and c axis is strong,which makes the crystal grow along b axis to form a one-dimensional chain structure.However,the main migration channel of lithium ions in olivine structure is plane(010).By shortening the growth in the direction of b axis and enhancing the diffusion along the directions of a and c,two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed.The dosage of polyols is the key factor guiding the dispersion of the crystals to the(010)plane.X-ray diffraction(XRD),Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and other means are used to characterize the samples.After experiments,we found that when the ratio of polyol/water was 2:1,the morphology of the synthesized sample was 20–30 nm thick nanosheets,which had the best electrochemical performance.At 0.1C,the discharge specific capacity reaches 148.9 mA·h·g^(-1),still reaches 144.3 mA·h·g^(-1) at the 50th cycle.and there is still 112.5 mA·h·g^(-1) under high rate(5C).This is thanks to the good dispersion of the material in the direction of the crystal plane(010).This can solve the problem of low conductivity and ionic mobility of phosphate materials.展开更多
Lithium cobalt phosphate (LiCoPO4, LCP), having a high operating potential (4.8 V vs. Li/Li+), a flat voltage profile and a good theoretical capacity (167 mAh/g), is considered a promising cathode material for improvi...Lithium cobalt phosphate (LiCoPO4, LCP), having a high operating potential (4.8 V vs. Li/Li+), a flat voltage profile and a good theoretical capacity (167 mAh/g), is considered a promising cathode material for improving the energy density of lithium-ion batteries (LIBs) [1] [2]. Here we report a category of method for synthesizing LCP, the solvothermal (ST) method with a binary solvent (deionized water: ethyl alcohol = 1:1), controlling the concentration of cobalt ion in 0.05 mol/L (ST-0.05) and 0.25mol/L (ST-0.25). The material phase was apparently identified via X-ray diffraction (XRD). Observed by scanning electron microscopy (SEM), the grain size of LCP powders synthesizing by solvothermal method with two kinds of the concentration of cobalt ion were 400 × 400 × 1000 nm cuboids (ST-0.05) and 150 × 150 × 250 nm hexagonal prisms containing nanoparticles (ST-0.25), respectively. Discharge capacities of LCP were 76.0 mAh/g (ST-0.05) and 94.5 mAh/g (ST-0.25), in the first cycle at 0.1 C, respectively.展开更多
We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water-diethylene glycol mixed solvents at 130℃ for 30min. We also studied how three surfactants...We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water-diethylene glycol mixed solvents at 130℃ for 30min. We also studied how three surfactants-hexadecyltrimethylammonium bromide, polyvinylpyrrolidone k30 (PVPk30), and polyvinylpyrrolidone k90 (PVPk90)-affected the structure, morphology, and performance of the prepared samples, characterizing them by using X-ray diffraction, scanning electron microscopy, trans- mission electron microscopy, charge/discharge tests, and electrochemical impedance spectroscopy. All the samples prepared with or without surfactant had orthorhombic structures with the Pnmb space group. Surfactant molecules may have acted as crystal-face inhibitors to adjust the oriented growth, morphol- ogy, and particle size of LiMnPO4. The microwave effects could accelerate the reaction and nucleation rates of LiMnPO4 at a lower reaction temperature. The LiMnPO4/C sample prepared with PVPk30 exhib- ited a flaky structure coated with a carbon layer (-2 nm thick), and it delivered a discharge capacity of 126 mAh/g with a capacity retention ratio of -99.9% after 50 cycles at 1C. Even at 5C, this sample still had a high discharge capacity of 110 mAh/g, demonstrating good rate performance and cycle performance. The improved performance of LiMnPO4 likely came from its nanoflake structure and the thin carbon layer coating its LiMnPO4 particles. Compared with the conventional polyol method, the microwave-assisted polyol method had a much lower reaction time.展开更多
Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resu...Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resulting in short cycle life.Herein,an electrolyte regulation strategy is developed to improve the cyclability of LMBs in carbonate electrolytes by introducing LiNO3 using trimethyl phosphate with a slightly higher donor number compared to NO_(3)^(-)as a solubilizer.This not only allows the formaion of Li^(+)-coordinated NO3 but also achieves the regulation of electrolyte solvation structures,leading to the formation of robust and ion-conductive solid-electrolyte interphase films with inorganic-rich inner and organic-rich outer layers on the Li metal anodes.As a result,high Coulombic efficiency of 99.1%and stable plating/stripping cycling of Li metal anode in LilCu cells were realized.Furthermore,excellent performance was also demonstrated in Li||LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM83)full cells and Cul/NCM83 anodefree cells using high mass-loading cathodes.This work provides a simple interphase engineering strategy through regulating the electrolyte solvation structures for high-energy-density LMBs.展开更多
The flourishing expansion of the lithium-ion batteries(LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can signifi...The flourishing expansion of the lithium-ion batteries(LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can significantly facilitate the sustainable utilization of lithium resources. Here, we successfully extract active lithium from spent LIBs through a simple, efficient, and low-energy-consumption chemical leaching process at room temperature, using a solution comprised of polycyclic aromatic hydrocarbons and ether solvents. The mechanism of lithium extraction is elucidated by clarifying the relationship between the redox potential and extraction efficiency. More importantly, the reclaimed active lithium is directly employed to fabricate LiFePO_(4) cathode with performance comparable to commercial materials. When implemented in 56 Ah prismatic cells, the cells deliver stable cycling properties with a capacity retention of ~90% after 1200 cycles. Compared with the other strategies, this technical approach shows superior economic benefits and practical promise. It is anticipated that this method may redefine the recycling paradigm for retired LIBs and drive the sustainable development of industries.展开更多
Here,by using atomically resolved scanning transmission electron microscopy and electron energy loss spectroscopy,we investigate the structural and chemical evolution of Li3V2(PO4)3 (LVP) upon the high-voltage window ...Here,by using atomically resolved scanning transmission electron microscopy and electron energy loss spectroscopy,we investigate the structural and chemical evolution of Li3V2(PO4)3 (LVP) upon the high-voltage window (3.0-4.8 V).We find that the valence of vanadium gradually increases towards the core corresponding to the formation of electrochemically inactive Li3-xV2(PO4)3 (L3-xVP) phases.These Li-deficient phases exhibit structure distortion with superstructure stripes,likely caused by the migration of the vanadium,which can slow down the lithium ion diffusion or even block the diffusion channels.Such kinetic limitations lead to the formation of Li-deficient phase along with capacity loss.Thus,the LVP continuously losses of electrochemical activity and Li-deficient phases gradually grow from the particle core towards the surface during cycling.After 500 cycles,the thickness of active LVP layer decreases to be - 5-20 nm.Moreover,the micromorphology and chemical composition of solid electrolyte interphase (SEI) have been investigated,indicating the thick SEI film also contributes to the capacity loss.The present work reveals the structural and chemical evolution in the cycled electrode materials at an atomic scale,which is essential to understand the voltage fading and capacity decaying of LVP cathode.展开更多
文摘The properties of trimethyl phosphate(TMP)-based nonflammable electrolytes with LiPF6 as solute were investigated using graphite anode and LiCoO2 cathode. The effect of TMP on non-flammability of electrolytes was also evaluated. It is found that the TMP reduction decomposition on graphite electrode at the potential of 1.3V (vs Li/Li+) is suppressed with ethylene carbonate(EC), dimethyl carbonate(DMC) and ethylmethyl carbonate(EMC) cosolvents and vinylene carbonate(VC) additives. The results show that the non-flammable electrolyte of 1mol/L LiPF6 61%(EC1.5-DMC1.0-EMC1.0)-39% TMP has good electrochemical properties. The discharge capacities of half-cells after 20 cycles are 254.8mA·h/g for Li/graphite and 144.1mA·h/g for Li/LiCoO2. The (graphite/)(LiCoO2) prismatic lithium-ion cell delivers a discharge capacity of 131mA·h/g at first cycle. With an addition of 4%VC to this non-flammable electrolyte, a discharge capacity of 134mA·h/g at first cycle and a capacity ratio of (84.3%) after 50 cycles are obtained for prismatic lithium-ion batteries. Furthermore, a nail penetration test demonstrates that the safety of prismatic lithium-ion batteries is dramatically improved by using TMP-containing (non-)(flammable) electrolytes.
基金the National Natural Science Foundation of China(No.52173246)the Science and Technology Planning Project of Guangzhou City,China(No.2023B03J1278)。
文摘The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries.
基金Projects(51172065,51404097,51504083,U1404613)supported by the National Natural Science Foundation of ChinaProject(16A150009)supported by the Key Scientific Research Project for Higher Education of Henan Province,China+2 种基金Project(16A150009)supported by the Natural Science Foundation of Henan Province(General Program)ChinaProject(166115)supported by the Postdoctoral Science Foundation of Henan Province,China
文摘Vanadium (III) phosphate monoclinic VPO4·H2O was synthesized hydrothermally. The ε-VOPO4 nanosheets, formed by the oxidative de-intercalation of protons from monoclinic VPO4·H2O, can reversibly react with more than 1 mol lithium atoms in two steps. Crystal XRD analysis revealed that the structure of the ε-VOPO4 nanosheets is monoclinic with lattice parameters of α=7.2588(4) A, b=6.8633(2) A and c=7.2667(4) A. The results show that the ε-VOPO4 nanosheets have a thickness of 200 nm and uniform crystallinity. Electrochemical characterization of the ε-VOPO4 monoclinic nanosheets reveals that they have good electrochemical properties at high current density, and deliver high initial capacity of 230.3 mA· h/g at a current density of 0.09 mA/cm2. Following the first charge cycle, reversible electrochemical lithium extraction/insertion at current density of 0.6 mA/cm2 affords a capacity retention rate of 73.6% (2.0?4.3 V window) that is stable for at least 1000 cycles.
基金Project(12JJ3017) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013GXNSFAA019304) supported by the Natural Science Foundation of Guangxi ProvinceProject(51364007) supported by the National Natural Science Foundation of China
文摘The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The XRD results reveal that a small amount of Mg2+ doping into Li sites does not significantly change the monoclinic structure of Li3V2(PO4)3, but Mg-doped Li3W2(PO4)3 has larger cell volume than the pristine Li3V2(PO4)3. All Mg-doped composites display better electrochemical performance than the pristine one, and Liz.94Mgo.03Vz(P04)3/C composite exhibits the highest capacity and the best cycle performance among all above-mentioned composites. The analysis of Li+ diffusion coefficients in Li3V2(PO4)3/C and Li2.94Mgo.03V2(P04)3/C indicates that rapid Li+ diffusion results from the doping of Mg2+ and the rapid Li+ diffusion is responsible for the better electrochemical performance of Mg-doped Li3V2(PO4)3/C composite cathode materials.
基金financially supported by the National Key Research and Development Program(Nos.2019YFC1907801,2019YFC1907803 and 2019YFC1907804)the Natural Science Foundation of Hunan(Nos.2021JJ2020066 and 2020JJ4733)+1 种基金the National Natural Science Foundation of China(No.51904340)the Central South University Innovation-Driven Research Program(No.2023CXQD009)。
文摘The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application.
基金the Science and Technology Commission of Shanghai Municipality (No. 12nm0503500)the National Science Foundation of China (Nos. 21376148, 11374205)
文摘This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon.
基金financially sponsored by the National Natural Science Foundation of China(Grant No:91534205)
文摘Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePOand directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePOnanorods with the reducing crystal size along the b axis shorten the diffusion distance of Liextraction/insertion, and thus improve the electrochemical properties of LiFePOnanorods. Such prepared LiFePOnanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePOnanorods is supposed to be ascribed to the fast Lidiffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra).
基金financially supported by the National Natural Science Foundation of China (No.21676017)the Opening Project of State Key Laboratory of Advanced Chemical Power Sources (No.SKL-ACPS-C-27)the Opening Project of State Key Laboratory of Organic-Inorganic Composites
文摘The polyvinyl carbonate(PVC)polymer solid electrolyte can be in-situ generated in the assembled lithium-ion battery(LIBs);however,its rigid characteristic leads to uneven interface contact between electrolyte and electrodes.In this work,trimethyl phosphate(TMP)is introduced into the precursor solution for in-situ generation of flexible PVC solid electrolyte to improve the interfacial contact of elec-trolyte and electrodes together with ionic conductivity.The PVC-TMP electrolyte exhibits good interface compatibility with the lithium metal anode,and the lithium symmetric battery based on PVC-TMP electrolyte shows no obvious polarization within 1000 h cycle.As a consequence,the initial interfacial resistance of battery greatly decreases from 278Ω(LiFePO_(4)(LFP)/PVC/Li)to 93Ω(LFP/PVC-TMP/Li)at 50℃,leading to an improved cycling stability of the LFP/PVC-TMP/Li battery.Such in-situ preparation of solid electrolyte within the battery is demonstrated to be very significant for commercial application.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the properties of Li3V2(PO4)3/C were evaluated by X-ray diffraction(XRD), scanning electron microscope(SEM) and electrochemical performance tests. The SEM images show that smaller size particles are obtained by adding larger and smaller PEGs. The electrochemical cycling of Li3V2(PO4)3/C prepared by both PEG200 and PEG20 k has a high initial discharge capacity of 131.1 mA·h/g at 0.1C during 3.0-4.2 V, and delivers a reversible discharge capacity of 123.6 m A·h/g over 30 cycles, which is better than that of other samples. The improvement in electrochemical performance is caused by its improved lithium ion diffusion coefficient for the macroporous morphology, which is verified by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).
基金financially supported by the Natural Science Foundation of China (No. 21076028)the National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201410150016)
文摘Carbon-coated LiFePO_4 hollow nanofibers as cathode materials for Li-ion batteries were obtained by coaxial electrospinning. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller specific surface area analysis, galvanostatic charge–discharge, and electrochemical impedance spectroscopy(EIS) were employed to investigate the crystalline structure, morphology, and electrochemical performance of the as-prepared hollow nanofibers. The results indicate that the carbon-coated LiFePO_4 hollow nanofibers have good long-term cycling performance and good rate capability: at a current density of 0.2C(1.0C = 170 mA ·g^-1) in the voltage range of 2.5–4.2 V, the cathode materials achieve an initial discharge specific capacity of 153.16 mA h·g^-1 with a first charge–discharge coulombic efficiency of more than 97%, as well as a high capacity retention of 99% after 10 cycles; moreover, the materials can retain a specific capacity of 135.68 mA h·g^-1, even at 2C.
基金supported by Priority Research item in Application Foundation Research Plan of Hebei(09963910D)the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University) Open Project Fund (KF0710,KF0802)+2 种基金Natural Science Research Guiding Project of Hebei Education Department (Z2008408)Ningxia National Science Foundation (NZ0843)Science and Technology Research and Development Guiding Plan of Qinhuangdao City (22,200901A003)
文摘Using solid-state synthesis method,a series of samples of lanthanum doped Li1-xLaxFePO4(x=0.0025,0.005,0.0075,0.01) were prepared.Each cathode structural and electrochemical properties were investigated using X-ray diffractometry(XRD),scanning electron microscopy(SEM),electrochemical impedance spectroscopy(EIS) and charge/discharge cycling.Nanopowders material with single-phase could be obtained.The reversible capacity could be drastically improved by the introduction of La.The optimum cells with Li0.99La0....
基金supported financially by the National Natural Science Foundation of China (No. 51572238)the Strategic Emerging Industry Project of Hunan Province, China (No. 2016GK4030)
文摘As a potential substitute for LiFePO4, LiMnPO4 has attracted more and more attention due to its higher energy, showing potential application in electric vehicle(EV) or hybrid electric vehicle(HEV). In this work,solvothermal method was used to prepare nano-sized LiMnPO4, where ethylene glycol was used as solvent, and lithium acetate(LiAc), phosphoric acid(H3 PO4) and manganese chloride(MnCl2) were used as precursors. The crystal structure and morphology of the obtained products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The electrochemical performance was evaluated by charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the molar ratio of LiAc:H3 PO4:MnCl2 plays a critical role in directing the morphology of LiMnPO4. Large plates transform into irregular nanoparticles when the molar ratio changes from 2:1:1 to 6:1:1. After carbon coating, the product prepared from the 6:1:1 precursor could deliver discharge capacities of 156.9,122.8, and 89.7 mAhg-1 at 0.05 C, 1 C and 10 C, respectively.The capacity retention can be maintained at 85.1% after 200 cycles at 1 C rate for this product.
基金supported by the National Natural Science Foundation of China(No.51672109)the Independent Cultivation Program of Innovation Team of Ji’nan City(No.2019GXRC011)Hong Kong Scholars Program(No.XJ2018006)。
文摘Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries.But,similar to other transition metal oxides(TMOs),it is also affected by large volume changes and inferior kinetics during redox reactions,resulting in the destruction of the crystal structure and poor electrochemical performance.Here,Fe_(3)O_(4)/C nanospheres anchored on the two-dimensional graphene oxide as precursors are phosphated and sintered to build the multiphasic nanocomposite.XRD results confirmed the multiphasic nanocomposite composed of Fe2O3,Fe_(3)O_(4) and Fe_(3)PO_(7),which will facilitate the Li+diffusion.And the carbonaceous matrix will buffer the volume changes and enhance electron conduction.Consequently,the multiphasic Febased anode delivers a large specific capacity of 1086 mAh/g with a high initial Coulombic efficiency of 87%at 0.1 C.It also has excellent cycling stability and rate property,maintaining a capacity retention of~87%after 300 cycles and a high reversible capacity of 632 mAh/g at 10 C.The proposed multiphasic structure offers a new insight into improving the electrochemical properties of TMO-based anodes for advanced alkali-ion batteries.
基金financial support from Natural Science Foundation of Guangdong Province(2018A030313423)Key Research and Development Program of Guangdong Province(2020B090919005)Pearl River Science and Technology New Star Project(201806010039).
文摘Phosphate material LiMnPO4 is popular for its high energy density(697 W·h·kg^(-1))and safety.When LiMnPO_(4) crystal grows,the potential barrier along b and c axis is strong,which makes the crystal grow along b axis to form a one-dimensional chain structure.However,the main migration channel of lithium ions in olivine structure is plane(010).By shortening the growth in the direction of b axis and enhancing the diffusion along the directions of a and c,two-dimensional nanosheets that are more conducive to the migration of lithium ions are formed.The dosage of polyols is the key factor guiding the dispersion of the crystals to the(010)plane.X-ray diffraction(XRD),Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and other means are used to characterize the samples.After experiments,we found that when the ratio of polyol/water was 2:1,the morphology of the synthesized sample was 20–30 nm thick nanosheets,which had the best electrochemical performance.At 0.1C,the discharge specific capacity reaches 148.9 mA·h·g^(-1),still reaches 144.3 mA·h·g^(-1) at the 50th cycle.and there is still 112.5 mA·h·g^(-1) under high rate(5C).This is thanks to the good dispersion of the material in the direction of the crystal plane(010).This can solve the problem of low conductivity and ionic mobility of phosphate materials.
文摘Lithium cobalt phosphate (LiCoPO4, LCP), having a high operating potential (4.8 V vs. Li/Li+), a flat voltage profile and a good theoretical capacity (167 mAh/g), is considered a promising cathode material for improving the energy density of lithium-ion batteries (LIBs) [1] [2]. Here we report a category of method for synthesizing LCP, the solvothermal (ST) method with a binary solvent (deionized water: ethyl alcohol = 1:1), controlling the concentration of cobalt ion in 0.05 mol/L (ST-0.05) and 0.25mol/L (ST-0.25). The material phase was apparently identified via X-ray diffraction (XRD). Observed by scanning electron microscopy (SEM), the grain size of LCP powders synthesizing by solvothermal method with two kinds of the concentration of cobalt ion were 400 × 400 × 1000 nm cuboids (ST-0.05) and 150 × 150 × 250 nm hexagonal prisms containing nanoparticles (ST-0.25), respectively. Discharge capacities of LCP were 76.0 mAh/g (ST-0.05) and 94.5 mAh/g (ST-0.25), in the first cycle at 0.1 C, respectively.
文摘We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water-diethylene glycol mixed solvents at 130℃ for 30min. We also studied how three surfactants-hexadecyltrimethylammonium bromide, polyvinylpyrrolidone k30 (PVPk30), and polyvinylpyrrolidone k90 (PVPk90)-affected the structure, morphology, and performance of the prepared samples, characterizing them by using X-ray diffraction, scanning electron microscopy, trans- mission electron microscopy, charge/discharge tests, and electrochemical impedance spectroscopy. All the samples prepared with or without surfactant had orthorhombic structures with the Pnmb space group. Surfactant molecules may have acted as crystal-face inhibitors to adjust the oriented growth, morphol- ogy, and particle size of LiMnPO4. The microwave effects could accelerate the reaction and nucleation rates of LiMnPO4 at a lower reaction temperature. The LiMnPO4/C sample prepared with PVPk30 exhib- ited a flaky structure coated with a carbon layer (-2 nm thick), and it delivered a discharge capacity of 126 mAh/g with a capacity retention ratio of -99.9% after 50 cycles at 1C. Even at 5C, this sample still had a high discharge capacity of 110 mAh/g, demonstrating good rate performance and cycle performance. The improved performance of LiMnPO4 likely came from its nanoflake structure and the thin carbon layer coating its LiMnPO4 particles. Compared with the conventional polyol method, the microwave-assisted polyol method had a much lower reaction time.
基金supported by the National Key Research and Development Program of China(No.2019YFE0118800).
文摘Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resulting in short cycle life.Herein,an electrolyte regulation strategy is developed to improve the cyclability of LMBs in carbonate electrolytes by introducing LiNO3 using trimethyl phosphate with a slightly higher donor number compared to NO_(3)^(-)as a solubilizer.This not only allows the formaion of Li^(+)-coordinated NO3 but also achieves the regulation of electrolyte solvation structures,leading to the formation of robust and ion-conductive solid-electrolyte interphase films with inorganic-rich inner and organic-rich outer layers on the Li metal anodes.As a result,high Coulombic efficiency of 99.1%and stable plating/stripping cycling of Li metal anode in LilCu cells were realized.Furthermore,excellent performance was also demonstrated in Li||LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM83)full cells and Cul/NCM83 anodefree cells using high mass-loading cathodes.This work provides a simple interphase engineering strategy through regulating the electrolyte solvation structures for high-energy-density LMBs.
基金supported by the National Key Research and Development Program of China (2022YFB2404800)the National Natural Science Foundation of China (U1966214 and 22008082)。
文摘The flourishing expansion of the lithium-ion batteries(LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can significantly facilitate the sustainable utilization of lithium resources. Here, we successfully extract active lithium from spent LIBs through a simple, efficient, and low-energy-consumption chemical leaching process at room temperature, using a solution comprised of polycyclic aromatic hydrocarbons and ether solvents. The mechanism of lithium extraction is elucidated by clarifying the relationship between the redox potential and extraction efficiency. More importantly, the reclaimed active lithium is directly employed to fabricate LiFePO_(4) cathode with performance comparable to commercial materials. When implemented in 56 Ah prismatic cells, the cells deliver stable cycling properties with a capacity retention of ~90% after 1200 cycles. Compared with the other strategies, this technical approach shows superior economic benefits and practical promise. It is anticipated that this method may redefine the recycling paradigm for retired LIBs and drive the sustainable development of industries.
基金supported by the National Natural Science Foundation of China (Nos.51502032,51575135,U1537206,51502007,and 51672007)the National Basic Research Program of China (Nos.2016YFA0300804 and 2016YFA0300903]"2011 Program" Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter.
文摘Here,by using atomically resolved scanning transmission electron microscopy and electron energy loss spectroscopy,we investigate the structural and chemical evolution of Li3V2(PO4)3 (LVP) upon the high-voltage window (3.0-4.8 V).We find that the valence of vanadium gradually increases towards the core corresponding to the formation of electrochemically inactive Li3-xV2(PO4)3 (L3-xVP) phases.These Li-deficient phases exhibit structure distortion with superstructure stripes,likely caused by the migration of the vanadium,which can slow down the lithium ion diffusion or even block the diffusion channels.Such kinetic limitations lead to the formation of Li-deficient phase along with capacity loss.Thus,the LVP continuously losses of electrochemical activity and Li-deficient phases gradually grow from the particle core towards the surface during cycling.After 500 cycles,the thickness of active LVP layer decreases to be - 5-20 nm.Moreover,the micromorphology and chemical composition of solid electrolyte interphase (SEI) have been investigated,indicating the thick SEI film also contributes to the capacity loss.The present work reveals the structural and chemical evolution in the cycled electrode materials at an atomic scale,which is essential to understand the voltage fading and capacity decaying of LVP cathode.