期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Congruences involving generalized central trinomial coefficients 被引量:3
1
作者 SUN Zhi-Wei 《Science China Mathematics》 SCIE 2014年第7期1375-1400,共26页
For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2... For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2)coincides with the Delannoy number Dn=n k=0n k n+k k in combinatorics.We investigate congruences involving generalized central trinomial coefficients systematically.Here are some typical results:For each n=1,2,3,...,we have n-1k=0(2k+1)Tk(b,c)2(b2-4c)n-1-k≡0(mod n2)and in particular n2|n-1k=0(2k+1)D2k;if p is an odd prime then p-1k=0T2k≡-1p(mod p)and p-1k=0D2k≡2p(mod p),where(-)denotes the Legendre symbol.We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms. 展开更多
关键词 CONGRUENCES central trinomial coefficients Motzkin numbers central Delannoy numbers
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部