期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Conformal Triple Derivations and Triple Homomorphisms of Lie Conformal Algebras
1
作者 Sania Asif Lipeng Luo +1 位作者 Yanyong Hong Zhixiang Wu 《Algebra Colloquium》 SCIE CSCD 2023年第2期263-280,共18页
Let R be a finite Lie conformal algebra.We investigate the conformal deriva-tion algebra CDer(R),conformal triple derivation algebra CTDer(R)and generalized con-formal triple derivation algebra GCTDer(R),focusing main... Let R be a finite Lie conformal algebra.We investigate the conformal deriva-tion algebra CDer(R),conformal triple derivation algebra CTDer(R)and generalized con-formal triple derivation algebra GCTDer(R),focusing mainly on the connections among these derivation algebras.We also give a complete classification of(generalized)con-formal triple derivation algebras on all finite simple Lie conformal algebras.In partic-ular,CTDer(R)=CDer(R),where R is a finite simple Lie conformal algebra.But for GCDer(R),we obtain a conclusion that is closely related to CDer(R).Finally,we introduce the definition of a triple homomorphism of Lie conformal algebras.Triple homomorphisms of all finite simple Lie conformal algebras are also characterized. 展开更多
关键词 triple derivation triple homomorphism conformal algebra
原文传递
Nonlinear Skew Lie Triple Derivations between Factors 被引量:7
2
作者 Chang Jing LI Fang Fang ZHAO Quan Yuan CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第7期821-830,共10页
Let A be a factor. For A, B ∈4, define by [A, B]. = AB- BA* the skew Lie product of A and B. In this article, it is proved that a map φ: A- A satisfies φ([[A, B]., C].) = [[φ(A), B]., C]. + [[A, φ(B)]. C... Let A be a factor. For A, B ∈4, define by [A, B]. = AB- BA* the skew Lie product of A and B. In this article, it is proved that a map φ: A- A satisfies φ([[A, B]., C].) = [[φ(A), B]., C]. + [[A, φ(B)]. C]. + [[A, B]., φ(C)]. for all A, B, C∈ A if and only if φ is an additive *-derivation. 展开更多
关键词 Skew Lie triple derivation derivation factor
原文传递
Lie Triple Derivations on von Neumann Algebras 被引量:2
3
作者 Lei LIU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2018年第5期817-828,共12页
Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ :A → A satisfies δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] +[[a, b], δ(c)] for any a, b, c∈ A wi... Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ :A → A satisfies δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] +[[a, b], δ(c)] for any a, b, c∈ A with ab = 0(resp. ab = P, where P is a fixed nontrivial projection in A), then there exist an additive derivation d from A into itself and an additive map f :A → ZA vanishing at every second commutator [[a, b], c] with ab = 0(resp.ab = P) such that δ(a) = d(a) + f(a) for any a∈ A. 展开更多
关键词 derivationS Lie triple derivations von Neumann algebras
原文传递
Lie Triple Derivations on Upper Triangular Matrices over a Commutative Ring 被引量:2
4
作者 Hai Ling LI Ying WANG 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期415-422,共8页
Let T(n, R) be the Lie algebra consisting of all n× n upper triangular matrices over a commutative ring R with identity 1 and M be a 2-torsion free unital T(n, R)-bimodule. In this paper, we prove that every ... Let T(n, R) be the Lie algebra consisting of all n× n upper triangular matrices over a commutative ring R with identity 1 and M be a 2-torsion free unital T(n, R)-bimodule. In this paper, we prove that every Lie triple derivation d : T(n, R) →M is the sum of a Jordan derivation and a central Lie triple derivation. 展开更多
关键词 Jordan derivation Lie triple derivation upper triangular matrices.
下载PDF
Jordan Triple Derivations on J-subspace Lattice Algebras
5
作者 Xiao Fei QI Jin Chuan HOU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第2期417-424,共8页
Let L be a J-subspace lattice on a Banach space X and Alg/2 the associated J-subspace lattice
关键词 J-subspace lattice algebra Jordan triple derivations generalized Jordan triple deriva- tions generalized Jordan derivations
原文传递
Lie Triple Derivations of the Lie Algebra of Dominant Block Upper Triangular Matrices
6
作者 Prakash Ghimire Huajun Huang 《Algebra Colloquium》 SCIE CSCD 2018年第3期475-492,共18页
Let N be the Lie algebra of all n x n dominant block upper triangular matrices over a field F. In this paper, we explicitly describe all Lie triple derivations of N when char(F) ≠ 2. As an application, we character... Let N be the Lie algebra of all n x n dominant block upper triangular matrices over a field F. In this paper, we explicitly describe all Lie triple derivations of N when char(F) ≠ 2. As an application, we characterize Lie derivations of N when char(F) ≠ 2. 展开更多
关键词 Lie triple derivation block upper triangular matrix Lie algebra
原文传递
THE BANACH-LIE GROUP OF LIE TRIPLE AUTOMORPHISMS OF AN H^*-ALGEBRA^* 被引量:1
7
作者 A.J.Calderón Martín C.Martín González 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1219-1226,共8页
We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtain... We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators. 展开更多
关键词 Banach-Lie group Lie triple automorphism Lie triple derivation
下载PDF
A Note on the Stability of Jordan Triple Higher Ring Derivations
8
作者 Jaiok ROH Yong-Soo JUNG Ick-Soon CHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第12期1975-1986,共12页
In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account ... In the present paper, we establish the stability and the superstability of a functional inequality corresponding to the functional equation fn(xyx) = ∑i+j+k=n fi(x)fj (y)fk(x). In addition, we take account of the problem of Jacobson radical ranges for such functional inequality. 展开更多
关键词 functional inequality Jordan triple higher ring derivation stability radical range
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部