There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is call...There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.展开更多
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were crea...This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.展开更多
This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect ...This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.展开更多
The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of th...The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of the parameters, tunneling could be enhanced considerably or suppressed completely. Quantum fluctuation during the tunneling is discussed as well and the numerical results are presented and analysed by virtue of Floquet formalism.展开更多
Weak and strong coupling interactions and trapped effects have always played a significant role in understanding physical and chemical properties of materials. Triple-well anharmonic potential may be modeled for inter...Weak and strong coupling interactions and trapped effects have always played a significant role in understanding physical and chemical properties of materials. Triple-well anharmonic potential may be modeled for interpretation of energy spectra from the nuclear to macro molecular systems, and also crystalline systems. Exact periods of a trapped particle in each well of the potential are explicitly derived. For the extended Duffing system, it is predicted that infinite series of both frequency and spatial trajectory approach to exact results in the limit of weak-coupling cases (g→0).展开更多
We propose a scheme to realize two-parameter estimation via Bose–Einstein condensates confined in a symmetric triple-well potential.The three-mode NOON state is prepared adiabatically as the initial state.The two par...We propose a scheme to realize two-parameter estimation via Bose–Einstein condensates confined in a symmetric triple-well potential.The three-mode NOON state is prepared adiabatically as the initial state.The two parameters to be estimated are the phase differences between the wells.The sensitivity of this estimation scheme is studied by comparing quantum and classical Fisher information matrices.As a result,we find an optimal particle number measurement method.Moreover,the precision of this estimation scheme means that the Heisenberg scaling behaves under the optimal measurement.展开更多
Bearing incipient fault characteristics are always submerged in strong background noise with weak fault characteristics, so that the incipient fault is hard to detect. Stochastic resonance (SR) is accepted to be an ef...Bearing incipient fault characteristics are always submerged in strong background noise with weak fault characteristics, so that the incipient fault is hard to detect. Stochastic resonance (SR) is accepted to be an effective way to detect the incipient;however, output saturation may occur if bistable SR is adopted. In this paper, a bearing incipient fault detection method is proposed based on triple-well potential system and SR mechanism. The achievement of SR highly replays on the nonlinear system which is adopted a triple-well potential function in this paper. Therefore, the parameters in the nonlinear system are optimized by particle swarm optimization algorithm, and the objective of optimization is to maximize the signal-to-noise ratio of the fault signal. After optimization, the optimal system parameters are obtained thereby the resonance effect is generated and the bearing incipient fault characteristic is enhanced. The proposed method is validated by simulation verification and engineering application. The results show that the method is effective to detect an incipient signal from heavy background noise and can obtain better outputs compared with bistable SR.展开更多
The dynamics of the three coupled dipolar Bose–Einstein condensates containing N bosons is investigated within a mean-field semiclassical picture based on the coherent-state method. Varieties of periodic solutions (...The dynamics of the three coupled dipolar Bose–Einstein condensates containing N bosons is investigated within a mean-field semiclassical picture based on the coherent-state method. Varieties of periodic solutions (configured as vortex, single depleted well, and dimerlike states) are obtained analytically when the fixed points are identified on the N=constant. The system dynamics are studied via numeric integration of trimer motion equations, thus revealing macroscopic effects of population inversion and self-trapping with different initial states. In particular, the trajectory of the oscillations of the populations in each well shows how the dynamics of the condensates are effected by the presence of dipole–dipole interaction and gauge field.展开更多
Within the mean-field three-site Bose-Hubbard model, the tunneling dynamics of dipolar bosonic gas with a periodically modulation of s-wave scattering is investigated. The system experiences complex and rich coherent ...Within the mean-field three-site Bose-Hubbard model, the tunneling dynamics of dipolar bosonic gas with a periodically modulation of s-wave scattering is investigated. The system experiences complex and rich coherent tunneling (CT)-coherent destruction of tunneling (CDT) transitions resulting from the correlated effect among the next-neighbor dipole-dipole interaction, the on-site interaction and the modulated s-wave scattering. In particular, The region of the modulated s-wave scattering for generating CT (CDT) is the widest (narrowest) when the on-site interaction and the next-neighbor dipole-dipole interaction have some correlated values, which are closely related to the tunneling energy and the interaction energy of the system. The correlated values for appearing CDT can be theoreticaJly gained from the tunneling energy and the interaction energy of the system.展开更多
基金supported by the Technology Innovation Team Program in Higher Education Institutions in Hubei Province, China (Grant No. T2020039)。
文摘There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.
基金supported by the National Natural Science Foundation of China (Grant Nos.10434060,10674047 and 10804031)the National Key Basic Research and Development Program of China (Grant No.2006CB921604)+2 种基金the Program for Changjiang Scholarand Innovative Research Team and Shanghai Leading Academic Discipline Project (Grant No.B408)the Youth Foundation of Jiangxi Educational Committee (Grant No.GJJ09530)the Scientific Research Foundation of ECIT (Grant No.DSH0417)
文摘This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)Innovation Foundation for Postgraduate of Hunan Province,China (Grant No. CX2011B026)
文摘This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974137 and 10775100)
文摘The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of the parameters, tunneling could be enhanced considerably or suppressed completely. Quantum fluctuation during the tunneling is discussed as well and the numerical results are presented and analysed by virtue of Floquet formalism.
文摘Weak and strong coupling interactions and trapped effects have always played a significant role in understanding physical and chemical properties of materials. Triple-well anharmonic potential may be modeled for interpretation of energy spectra from the nuclear to macro molecular systems, and also crystalline systems. Exact periods of a trapped particle in each well of the potential are explicitly derived. For the extended Duffing system, it is predicted that infinite series of both frequency and spatial trajectory approach to exact results in the limit of weak-coupling cases (g→0).
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.12088101,11725417,and U1930403)Science Challenge Project(Grant No.TZ2018005)。
文摘We propose a scheme to realize two-parameter estimation via Bose–Einstein condensates confined in a symmetric triple-well potential.The three-mode NOON state is prepared adiabatically as the initial state.The two parameters to be estimated are the phase differences between the wells.The sensitivity of this estimation scheme is studied by comparing quantum and classical Fisher information matrices.As a result,we find an optimal particle number measurement method.Moreover,the precision of this estimation scheme means that the Heisenberg scaling behaves under the optimal measurement.
基金the National Natural Science Foundation of China (No. 51705321)the Fundamental Research Funds for the Central Universities (Nos. 2232019D3-29 and 2232017A-03)+2 种基金the China Postdoctoral Science Foundation (No. 2017M611576)the Shanghai Industrial Internet Innovation and Development Project (No. 2018-GYHLW-01003)the Energy Intelligent Management Application Platform Project Based on Artificial Intelligence (No. 2018-RGZN-02055)。
文摘Bearing incipient fault characteristics are always submerged in strong background noise with weak fault characteristics, so that the incipient fault is hard to detect. Stochastic resonance (SR) is accepted to be an effective way to detect the incipient;however, output saturation may occur if bistable SR is adopted. In this paper, a bearing incipient fault detection method is proposed based on triple-well potential system and SR mechanism. The achievement of SR highly replays on the nonlinear system which is adopted a triple-well potential function in this paper. Therefore, the parameters in the nonlinear system are optimized by particle swarm optimization algorithm, and the objective of optimization is to maximize the signal-to-noise ratio of the fault signal. After optimization, the optimal system parameters are obtained thereby the resonance effect is generated and the bearing incipient fault characteristic is enhanced. The proposed method is validated by simulation verification and engineering application. The results show that the method is effective to detect an incipient signal from heavy background noise and can obtain better outputs compared with bistable SR.
基金Project supported by the National Key Basic Research Special Foundation of China(Grant Nos.2011CB921502,2012CB821305,2009CB930701,and 2010CB922904)the National Natural Science Foundation of China(Grant Nos.10934010,11228409,and 61227902)the National Natural Science Foundation of China–The Research Grants Council(Grant Nos.11061160490 and 1386-N-HKU748/10)
文摘The dynamics of the three coupled dipolar Bose–Einstein condensates containing N bosons is investigated within a mean-field semiclassical picture based on the coherent-state method. Varieties of periodic solutions (configured as vortex, single depleted well, and dimerlike states) are obtained analytically when the fixed points are identified on the N=constant. The system dynamics are studied via numeric integration of trimer motion equations, thus revealing macroscopic effects of population inversion and self-trapping with different initial states. In particular, the trajectory of the oscillations of the populations in each well shows how the dynamics of the condensates are effected by the presence of dipole–dipole interaction and gauge field.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274255 and 11305132by the Natural Science Foundation of Gansu province under Grant No.2011GS04358by Creation of Science and Technology of Northwest Normal University,China under Grant Nos.NWNU-KJCXGC-03-48,NWNU-LKQN-10-27,NWNU-LKQN-12-12,and NWNU-LKQN-11-26
文摘Within the mean-field three-site Bose-Hubbard model, the tunneling dynamics of dipolar bosonic gas with a periodically modulation of s-wave scattering is investigated. The system experiences complex and rich coherent tunneling (CT)-coherent destruction of tunneling (CDT) transitions resulting from the correlated effect among the next-neighbor dipole-dipole interaction, the on-site interaction and the modulated s-wave scattering. In particular, The region of the modulated s-wave scattering for generating CT (CDT) is the widest (narrowest) when the on-site interaction and the next-neighbor dipole-dipole interaction have some correlated values, which are closely related to the tunneling energy and the interaction energy of the system. The correlated values for appearing CDT can be theoreticaJly gained from the tunneling energy and the interaction energy of the system.