期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
基于Triplet Loss和KNN的非侵入式未知负荷识别
1
作者 张胜 陈铁 《现代电子技术》 北大核心 2024年第18期8-14,共7页
针对在接入新负荷时传统非侵入式负荷识别算法会产生误分类的问题,提出一种基于三元组损失(Triplet Loss)和KNN的非侵入式未知负荷识别算法。首先,采用负荷稳态运行时的电流、电压构造多特征融合的彩色V-I轨迹图像;然后,挖掘在线的Semi-... 针对在接入新负荷时传统非侵入式负荷识别算法会产生误分类的问题,提出一种基于三元组损失(Triplet Loss)和KNN的非侵入式未知负荷识别算法。首先,采用负荷稳态运行时的电流、电压构造多特征融合的彩色V-I轨迹图像;然后,挖掘在线的Semi-Hard样本对,使用Triplet Loss训练神经网络,并得到各样本的特征向量;最后,对特征向量进行PCA降维,并基于类中心构造邻域,使用KNN算法来进行负荷识别。使用PLAID、COOLL数据集对所提算法进行测试。测试结果表明,所提的负荷识别算法在已知类别负荷的分类和未知负荷的识别方面均有较高的准确率。 展开更多
关键词 三元组损失 KNN 非侵入式负荷监测 V-I轨迹 PCA降维 特征融合
下载PDF
基于Triplet loss的电磁阀故障识别方法 被引量:3
2
作者 张文啸 孟国香 叶骞 《液压与气动》 北大核心 2022年第9期116-125,共10页
针对电磁阀故障识别对专家知识依赖过高,现有智能诊断系统多需要人为提取信号特征等问题,以某型号电磁阀作为研究对象,人为设置故障工况,采集各种工况下的多通道运行数据,利用TensorFlow平台搭建了对该电磁阀的端对端故障识别模型。此外... 针对电磁阀故障识别对专家知识依赖过高,现有智能诊断系统多需要人为提取信号特征等问题,以某型号电磁阀作为研究对象,人为设置故障工况,采集各种工况下的多通道运行数据,利用TensorFlow平台搭建了对该电磁阀的端对端故障识别模型。此外,在此基础上又提出了基于Triplet loss函数的改进模型,并进行了验证测试。结果表明,基于Triplet loss的故障识别模型除具有更高的识别准确率之外,对于在不同动作频率下工作的电磁阀信号有更好的泛化能力。 展开更多
关键词 电磁阀 故障识别 机器学习 triplet loss TensorFlow
下载PDF
基于残差网络和多模Triplet Loss的素描人脸识别
3
作者 蓝凌 吴剑滨 侯亮 《现代信息科技》 2020年第21期71-75,共5页
人脸素描识别是从一个大的人脸素描数据集识别人脸照片,它的主要挑战在于不同模态之间的差异,为了解决这个问题,提出一种基于残差网络多任务度量学习的素描人脸识别框架。首先,对于减少不同模式之间特征的差异性问题,设计了一个三通道... 人脸素描识别是从一个大的人脸素描数据集识别人脸照片,它的主要挑战在于不同模态之间的差异,为了解决这个问题,提出一种基于残差网络多任务度量学习的素描人脸识别框架。首先,对于减少不同模式之间特征的差异性问题,设计了一个三通道神经网络来提取照片模态和草图模态的非线性特征,然后三个网络的参数共享;其次,设计了多模Triplet Loss来约束公共空间中的特征,使模型在扩大异类样本距离的同时,减少素描人脸的同类差异。 展开更多
关键词 深度学习 残差网络 素描人脸识别 多模triplet loss
下载PDF
增强提示学习的少样本文本分类方法 被引量:2
4
作者 李睿凡 魏志宇 +2 位作者 范元涛 叶书勤 张光卫 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期1-12,共12页
针对少样本文本分类任务,提出提示学习增强的分类算法(EPL4FTC)。该算法将文本分类任务转换成基于自然语言推理的提示学习形式,在利用预训练语言模型先验知识的基础上实现隐式数据增强,并通过两种粒度的损失进行优化。为捕获下游任务中... 针对少样本文本分类任务,提出提示学习增强的分类算法(EPL4FTC)。该算法将文本分类任务转换成基于自然语言推理的提示学习形式,在利用预训练语言模型先验知识的基础上实现隐式数据增强,并通过两种粒度的损失进行优化。为捕获下游任务中含有的类别信息,采用三元组损失联合优化方法,并引入掩码语言模型任务作为正则项,提升模型的泛化能力。在公开的4个中文文本和3个英文文本分类数据集上进行实验评估,结果表明EPL4FTC方法的准确度明显优于所对比的基线方法。 展开更多
关键词 预训练语言模型 少样本学习 文本分类 提示学习 三元组损失
下载PDF
联合归一化模块和多分支特征的行人重识别
5
作者 任丹萍 董会升 +1 位作者 何婷婷 张春华 《计算机工程与设计》 北大核心 2024年第4期1233-1239,共7页
针对行人重识别技术中存在特征挖掘不充分的问题,提出一种联合归一化模块和多分支特征的行人重识别模型。在主干网络中嵌入注意力机制引导的实例归一化模块,减轻背景等杂波信息的影响。在双级特征融合模块对局部特征进行加权后再聚合形... 针对行人重识别技术中存在特征挖掘不充分的问题,提出一种联合归一化模块和多分支特征的行人重识别模型。在主干网络中嵌入注意力机制引导的实例归一化模块,减轻背景等杂波信息的影响。在双级特征融合模块对局部特征进行加权后再聚合形成对行人特征的更细节表达。联合平滑交叉熵损失、三元组损失以及跨分支特征蒸馏损失对网络进行优化。所提模型在Market-1501和DukeMTMC-ReID数据集上首位准确率分别达到了95.7%和89.2%。实验结果表明,该模型增强了对图像特征的提取。 展开更多
关键词 归一化 行人重识别 注意力机制 多分支特征 特征提取 特征蒸馏损失 三元组损失
下载PDF
多层特征融合与语义增强的盲图像质量评价
6
作者 赵文清 许丽娇 +1 位作者 陈昊阳 李梦伟 《智能系统学报》 CSCD 北大核心 2024年第1期132-141,共10页
针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信... 针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信息,进而指导失真图像到质量分数的映射过程;考虑预测分数和主观分数之间的相对排名关系,对L_(1)损失函数和三元组排名损失函数进行融合,构建新的损失函数L_(mix)。为了验证本文方法的有效性,在野生图像质量挑战数据集上进行了验证和对比实验,该算法的斯皮尔曼等级相关系数与皮尔逊线性相关系数指标相比原算法分别提升2.3%和2.3%;在康斯坦茨真实图像质量数据数据集和野生图像质量挑战数据集上进行了跨数据集实验,该算法在面对真实失真图像时表现出了良好的泛化性能。 展开更多
关键词 深度学习 图像质量 卷积神经网络 特征提取 通道注意力结构 多层次特征融合 扩张卷积 三元组损失函数
下载PDF
联合注意力机制和多分支特征的行人重识别
7
作者 任丹萍 董会升 何婷婷 《计算机工程与设计》 北大核心 2024年第8期2520-2526,共7页
针对行人重识别技术中存在模型识别率低的问题,提出一个联合注意力机制和多分支特征的网络模型。在残差网络中嵌入自注意力机制模块强化图像有效特征的提取,在深度特征挖掘模块,使用全局特征分支、局部关联特征分支以及随机擦除特征分... 针对行人重识别技术中存在模型识别率低的问题,提出一个联合注意力机制和多分支特征的网络模型。在残差网络中嵌入自注意力机制模块强化图像有效特征的提取,在深度特征挖掘模块,使用全局特征分支、局部关联特征分支以及随机擦除特征分支形成对行人更全面的描述。在优化过程中提出联合余弦交叉熵损失、全样本三元组损失、中心损失以及特征对齐损失对网络使用最小最大策略进行更新。所提方法在Market-1501和DukeMTMC-reID数据集上首位准确率分别达到了95.8%和89.8%。 展开更多
关键词 行人重识别 深度学习 注意力机制 多分支特征 局部特征 随机擦除 三元组损失
下载PDF
基于改进YOLOv8n的煤矿井下钻杆计数方法
8
作者 姜媛媛 刘宋波 《工矿自动化》 CSCD 北大核心 2024年第8期112-119,共8页
为提高煤矿井下钻杆计数的效率和精度,提出了一种基于改进YOLOv8n模型的煤矿井下钻杆计数方法。建立了YOLOv8n−TBiD模型,该模型可准确检测矿井钻机工作视频中的钻杆并进行有效分割:为有效捕获钻杆的边界信息,提高模型对钻杆形状识别的精... 为提高煤矿井下钻杆计数的效率和精度,提出了一种基于改进YOLOv8n模型的煤矿井下钻杆计数方法。建立了YOLOv8n−TBiD模型,该模型可准确检测矿井钻机工作视频中的钻杆并进行有效分割:为有效捕获钻杆的边界信息,提高模型对钻杆形状识别的精度,使用加权双向特征金字塔网络(BiFPN)替换路径聚合网络(PANet);针对钻杆易与昏暗的矿井环境混淆的问题,在Backbone网络的SPPF模块后添加三分支注意力(Triplet Attention),以增强模型抑制背景干扰的能力;针对钻杆在图像中占比小、背景信息繁杂的问题,采用Dice损失函数替换CIoU损失函数来优化模型对目标钻杆的分割处理。利用YOLOv8n−TBiD模型分割出的钻杆及其掩码信息,根据打钻过程中钻杆掩码面积变小而装新钻杆时钻杆掩码面积突然增大的规律,设计了一种钻杆计数算法。选取综采工作面实际采集的钻机工作视频对基于YOLOv8n−TBiD模型的钻杆计数方法进行了实验验证,结果表明:①YOLOv8n−TBiD模型检测钻杆的平均精度均值达94.9%,与对比模型GCI−YOLOv4,ECO−HC,P−MobileNetV2,YOLOv5,YOLOX相比,检测准确率分别提升了4.3%,7.5%,2.1%,6.3%,5.8%,检测速度较原始YOLOv8n模型提升了17.8%。②所提钻杆计数算法在不同煤矿井下环境的视频数据集上实现了99.3%的钻杆计数精度。 展开更多
关键词 矿井钻机 钻杆计数 YOLOv8n−TBiD BiFPN triplet Attention Dice损失函数 钻杆掩码 图像分割
下载PDF
基于改进PatchSVDD的田间异常区域检测方法
9
作者 陈祖强 庞立欣 +3 位作者 郭娜炜 蔡金金 么炜 刘博 《河北农业大学学报》 CAS CSCD 北大核心 2024年第1期106-114,共9页
利用无人机遥感技术对农田进行监测并及时发现田间异常对保证农业生产具有重要意义。目前田间异常区域检测需要标注大量的正常与异常样本。然而,异常样本在整个农田区域中占比过小且无法充分收集。特别是农田异常的多样性和不可预知性,... 利用无人机遥感技术对农田进行监测并及时发现田间异常对保证农业生产具有重要意义。目前田间异常区域检测需要标注大量的正常与异常样本。然而,异常样本在整个农田区域中占比过小且无法充分收集。特别是农田异常的多样性和不可预知性,对检测方法的适用性提出了更高的要求。针对以上问题,本文提出基于改进PatchSVDD (Patch-level Support Vector Data Description)模型的田间异常区域检测方法,该方法仅使用田间正常区域的标注信息,即可对田间异常区域进行检测和定位。首先,改进方法引入不相邻图像块之间的边界损失函数,从而提升了正常与异常样本边界的判别性,改进了检测的鲁棒性;第二,引入外部记忆组件,通过压缩存储正常样本特征,从而在保证检测精度的基础上有效减少了测试阶段的时间和空间消耗;第三,构建了包含杂草簇、种植缺失、障碍物、双倍种植和积水共5个异常类型的田间异常数据集。本文方法在平均检测AUC(Area Under Curve)值和平均定位AUC值上分别达到了96.9%和94.6%,相比于原算法分别提升1.2%和1.6%,从而验证了方法的有效性。 展开更多
关键词 农田监测 异常检测 无人机遥感 三元损失函数 核心集
下载PDF
一种基于度量学习的自适应非侵入式负荷识别方法
10
作者 王丙楠 陆玲霞 +1 位作者 包哲静 于淼 《电测与仪表》 北大核心 2024年第11期54-60,共7页
现有非侵入式负荷识别技术大多基于最优化和模式识别算法,两种算法在模型泛化能力和未知负荷识别上均存在一定缺陷。针对这一问题,文中提出一种基于度量学习的非侵入式负荷识别模型,通过卷积神经网络将负荷电流特性映射到度量空间,在网... 现有非侵入式负荷识别技术大多基于最优化和模式识别算法,两种算法在模型泛化能力和未知负荷识别上均存在一定缺陷。针对这一问题,文中提出一种基于度量学习的非侵入式负荷识别模型,通过卷积神经网络将负荷电流特性映射到度量空间,在网络训练时使用三元组损失实现特征的集聚,对度量空间特征进行相似度判别实现负荷辨识。所提方法可实现对未知负荷的有效识别,并具有较强的泛化能力;另一方面,度量学习作为小样本学习的方法之一,能够减轻对训练样本的依赖,具有较高的实用性。 展开更多
关键词 非侵入式负荷识别 度量学习 三元组损失 小样本学习
下载PDF
基于注意力机制和循环域三元损失的域自适应目标检测
11
作者 周洋 韩冰 +2 位作者 高新波 杨铮 陈玮铭 《自动化学报》 EI CAS CSCD 北大核心 2024年第11期2188-2203,共16页
目前大多数深度学习算法都依赖于大量的标注数据并欠缺一定的泛化能力.无监督域自适应算法能提取到已标注数据和未标注数据间隐式共同特征,从而提高算法在未标注数据上的泛化性能.目前域自适应目标检测算法主要为两阶段目标检测器设计.... 目前大多数深度学习算法都依赖于大量的标注数据并欠缺一定的泛化能力.无监督域自适应算法能提取到已标注数据和未标注数据间隐式共同特征,从而提高算法在未标注数据上的泛化性能.目前域自适应目标检测算法主要为两阶段目标检测器设计.针对单阶段检测器中无法直接进行实例级特征对齐导致一定数量域不变特征的缺失,提出结合通道注意力机制的图像级域分类器加强域不变特征提取.此外,对于域自适应目标检测中存在类别特征的错误对齐引起的精度下降问题,通过原型学习构建类别中心,设计了一种基于原型的循环域三元损失(Cycle domain triplet loss,CDTL)函数,从而实现原型引导的精细类别特征对齐.以单阶段目标检测算法作为检测器,并在多种域自适应目标检测公共数据集上进行实验.实验结果证明该方法能有效提升原检测器在目标域的泛化能力,达到比其他方法更高的检测精度,并且对于单阶段目标检测网络具有一定的通用性. 展开更多
关键词 无监督域自适应 注意力机制 循环域三元损失函数 目标检测
下载PDF
基于超球面三元组编码的干扰模式开集识别
12
作者 高玉龙 王国强 王钢 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期895-905,共11页
干扰模式识别是现代军事通信对抗中必不可少的一环,随着复杂电磁环境当中各种新型恶意干扰样式层出不穷,对于未知型干扰的判决也变得愈发重要。因此,要求干扰模式识别算法保持对于已知型干扰高精度识别的同时,也能够完成对于未知型干扰... 干扰模式识别是现代军事通信对抗中必不可少的一环,随着复杂电磁环境当中各种新型恶意干扰样式层出不穷,对于未知型干扰的判决也变得愈发重要。因此,要求干扰模式识别算法保持对于已知型干扰高精度识别的同时,也能够完成对于未知型干扰的判决,以排除未知型恶意干扰的影响。基于此,该文将未知型干扰存在时的干扰模式识别问题建模为开集识别问题,并提出一种基于超球面3元组编码的干扰模式开集识别方法。所提方法基于超球面3元组对输入的时频图像进行降维编码以提高识别精度,然后采用元识别分类器准确地完成干扰模式开集识别任务。通过仿真试验证明该算法在干信比大于–2 dB时能够高效地完成开放空间中的干扰模式识别任务。 展开更多
关键词 未知型干扰信号 开集识别 3元组损失 超球面 元识别
下载PDF
结合数据增强的跨模态行人重识别轻量网络
13
作者 曹钢钢 王帮海 宋雨 《计算机工程与应用》 CSCD 北大核心 2024年第8期131-139,共9页
现有的跨模态行人重识别方法中,轻量化网络的相关研究较少。考虑到硬件部署对轻量化网络的需求,提出新的跨模态行人重识别轻量网络。以Osnet为基础,进行特征提取器和特征嵌入器的拆分。同时使用数据增强操作,利用有限的数据集,最大程度... 现有的跨模态行人重识别方法中,轻量化网络的相关研究较少。考虑到硬件部署对轻量化网络的需求,提出新的跨模态行人重识别轻量网络。以Osnet为基础,进行特征提取器和特征嵌入器的拆分。同时使用数据增强操作,利用有限的数据集,最大程度提高了网络的鲁棒性。改进难样本三元组损失函数,在减少计算量的同时缩小模态间差异,提升网络识别准确率。提出的轻量化网络结构简单且效果显著,在SYSU-MM01数据集的全搜索模式下rank-1/mAP分别达到65.56%、61.36%,参数量仅为1.92×10^(6)。 展开更多
关键词 深度可分离卷积 行人重识别 轻量化网络 难样本三元组损失函数
下载PDF
基于样本对语义主动挖掘的图文匹配算法
14
作者 陈永锋 刘劲 +2 位作者 杨志景 陈锐涵 谭俊鹏 《广东工业大学学报》 CAS 2024年第4期89-97,共9页
针对目前基于共识学习的图文匹配算法无法有效匹配图像−文本样本对中难分的负样本,模型的泛化能力较弱,在大规模数据集上效果不佳等不足,本文提出了一种基于样本对语义主动挖掘的图文匹配模型。首先,提出的自适应分层强化损失具有多样... 针对目前基于共识学习的图文匹配算法无法有效匹配图像−文本样本对中难分的负样本,模型的泛化能力较弱,在大规模数据集上效果不佳等不足,本文提出了一种基于样本对语义主动挖掘的图文匹配模型。首先,提出的自适应分层强化损失具有多样化的学习模式,在传统的三元组损失基础上,增加具有预测性的候选实例(难以分辨的样本对)进行辅助训练。其主动学习模式通过一种惩罚机制来关注难分的负样本,以提高判别能力。此外,提出的模型还能自适应地从非真实标签样本中挖掘出更多隐藏的相关语义表征,从而提高了模型的性能和泛化能力。最后,在Flickr30K和MSCOCO公共数据集上的实验结果证明了该算法的有效性,其性能达到了目前先进水平。本方法有效地结合了图像文本两种模态,能有效提高自然语言搜索和视觉问题回答等应用的性能。 展开更多
关键词 图文匹配 共识学习 三元组损失 难分的负对 跨模态检索
下载PDF
电子监控部分遮挡目标单模态自监督信息挖掘技术
15
作者 周艳秋 高宏伟 +1 位作者 何婷 辛春花 《现代电子技术》 北大核心 2024年第10期47-51,共5页
针对电子监控视频中受遮挡目标识别难度高的问题,提出一种电子监控部分遮挡目标单模态自监督信息挖掘技术。为了得到目标的状态信息,利用遮挡检测方法判断监控视频中是否存在部分遮挡目标。当监控视频存在部分遮挡目标时,利用减法聚类... 针对电子监控视频中受遮挡目标识别难度高的问题,提出一种电子监控部分遮挡目标单模态自监督信息挖掘技术。为了得到目标的状态信息,利用遮挡检测方法判断监控视频中是否存在部分遮挡目标。当监控视频存在部分遮挡目标时,利用减法聚类方法进行特定目标的识别、跟踪或描述,并提供更准确和详细的目标特征信息。在此基础上,将交叉熵损失函数与软间隔三元组损失函数构建的监督遮挡目标特征学习判别损失函数作为部分遮挡目标信息挖掘的目标函数,在每个批次的电子监控样本中,搜寻最小距离的负样本对以及最大距离的正样本对,并通过反向传播优化参数。由此输入电子监控图像样本,通过前向传播输出得到电子监控部分遮挡目标单模态自监督信息挖掘结果。实验结果表明,所提出的技术可以有效挖掘电子监控部分遮挡目标,目标挖掘的mAP值高于0.9,能够为提升监控目标识别精度提供可靠依据。 展开更多
关键词 电子监控 遮挡检测 单模态自监督 信息挖掘 交叉熵损失函数 三元组损失函数
下载PDF
基于内卷神经网络的轻量化步态识别方法
16
作者 王红茹 王紫薇 Chupalov ALEKSANDR 《应用科技》 CAS 2024年第2期40-47,共8页
现有步态识别方法存在计算量大、识别速率较慢和易受视角变化影响等弊端,会造成模型难以部署、步态识别准确率降低等问题。针对以上问题本文提出一种基于内卷神经网络的高准确率步态识别方法。首先,基于残差网络架构和内卷神经网络算子... 现有步态识别方法存在计算量大、识别速率较慢和易受视角变化影响等弊端,会造成模型难以部署、步态识别准确率降低等问题。针对以上问题本文提出一种基于内卷神经网络的高准确率步态识别方法。首先,基于残差网络架构和内卷神经网络算子提出了内卷神经网络模型,该模型利用内卷层实现步态特征提取以达到减少模型训练参数的目的;然后,在内卷神经网络模型基础上,建立一个由三元组损失函数和传统损失函数Softmax loss组成的联合损失函数,该函数使所提出的模型具有更好的识别性能及更高的跨视角条件的识别准确率;最后,基于CASIA-B步态数据集进行实验验证。实验结果表明,本文所提方法的网络模型参数量仅有5.04 MB,与改进前的残差网络相比参数量减少了53.46%;此外,本文网络在相同视角以及跨视角条件下相比主流算法具有更好的识别准确率,解决了视角变化情况下步态识别准确率降低的问题。 展开更多
关键词 步态识别 内卷神经网络 残差网络 神经网络算子 内卷层 三元组损失函数 传统损失函数 联合损失函数
下载PDF
面向三维模型草图检索的三元层次度量网络
17
作者 杨瞻源 白静 +2 位作者 李文静 彭斌 拖继文 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第11期1791-1804,共14页
针对基于草图的三维模型检索仍然存在将草图视作普通图像忽略其特有的稀疏性,以及对草图和三维模型的类内差异性重视不足,从而影响检索性能的问题,提出一种面向三维模型草图检索的三元层次度量网络.首先引入笔画点序列分支构建三元组网... 针对基于草图的三维模型检索仍然存在将草图视作普通图像忽略其特有的稀疏性,以及对草图和三维模型的类内差异性重视不足,从而影响检索性能的问题,提出一种面向三维模型草图检索的三元层次度量网络.首先引入笔画点序列分支构建三元组网络结构,实现对草图数据的信息增强;然后通过多层次联合损失对网络进行域内域间跨域的全面约束,使得网络学习到同时体现数据的单域类内差异和域间关系的表示特征,有效地提升网络的检索性能.实验结果表明,在2个公开数据集SHREC2013和SHREC2014上,所提网络的平均检索精度均值分别为87.7%和83.3%,比先进工作(相同基础网络)分别提升0.5个百分点和1.5个百分点以上. 展开更多
关键词 基于草图的三维模型检索 三元网络结构 多层次联合损失 语义嵌入 跨模态检索
下载PDF
基于Camstyle改进的行人重识别算法 被引量:3
18
作者 张师林 曹旭 《计算机工程与应用》 CSCD 北大核心 2020年第15期124-131,共8页
行人重识别是计算机领域的一个热门话题,在交通、公共安全和视频监控等场景有着广泛的应用。提出了摄像头风格学习(CSL)结合多粒度损失(MGL)的新方法,在行人重识别领域取得了优势性能。通过摄像头风格学习可以减少由摄像头差异带来的影... 行人重识别是计算机领域的一个热门话题,在交通、公共安全和视频监控等场景有着广泛的应用。提出了摄像头风格学习(CSL)结合多粒度损失(MGL)的新方法,在行人重识别领域取得了优势性能。通过摄像头风格学习可以减少由摄像头差异带来的影响,更好地发挥triplet loss的优势,有效地提高识别精度。在学习过程中结合多粒度损失,利用多个层次的特征图,使学习到的特征更有区分力。在Market-1501和DukemMTMC-reID两个大型数据集上做了对比实验,实验结果表明,提出的方法优于原Camstyle方法,在Rank1上提高了3.7%和3.2%,准确率分别达到93.2%和81.5%。在Market-1501数据集上结合多粒度损失并使用re-ranking方法后,Rank1的准确率为96.1%,mAP的准确率为93.8%,获得了当前已发表最高准确度。 展开更多
关键词 摄像头风格学习 triplet loss 行人重识别 多粒度损失
下载PDF
基于增强特征融合网络的行人重识别方法 被引量:7
19
作者 刘玉杰 周彩云 +1 位作者 李宗民 李华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第2期232-240,共9页
针对行人重识别技术受遮挡、背景冗余、光照、姿态以及检测误差等问题的影响,鲁棒的行人特征表达对正确检索行人越来越重要.为了利用对齐特征和度量学习的优势,进一步分析局部空间语义特征.首先,在特征层面:一是在ResNet50框架中嵌入空... 针对行人重识别技术受遮挡、背景冗余、光照、姿态以及检测误差等问题的影响,鲁棒的行人特征表达对正确检索行人越来越重要.为了利用对齐特征和度量学习的优势,进一步分析局部空间语义特征.首先,在特征层面:一是在ResNet50框架中嵌入空间变换结构,自适应对齐局部区域空间特征,解决因局部区域不对齐导致的空间语义不一致的问题;二是通过对齐的局部特征设计一种增强特征融合网络,充分利用语义信息间的关联性提取图像的细节特征.然后,在损失函数层面:提出一种排序矩阵方法选取区域样本对,设计了一种局部三元组损失计算方法,联合正则化分类损失共同训练网络,充分利用融合的增强特征,达到高效度量的效果.最后,文中方法结合现有的重排算法进一步提高了Rank-1与mAP检索精度,在行人重识别基准数据集Market-1501上的实验结果,证明了本文方法的有效性. 展开更多
关键词 空间语义特征 增强特征融合网络 排序矩阵 局部三元组损失
下载PDF
结合注意力机制的跨域服装检索 被引量:4
20
作者 刘玉杰 王文亚 +1 位作者 李宗民 李华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第6期894-902,共9页
针对跨域服装检索中服装商品图像拍摄严格约束光照、背景等条件,而用户图像源自复杂多变的日常生活场景,难以避免背景干扰以及视角、姿态引起的服装形变等问题.提出一种结合注意力机制的跨域服装检索方法.利用深度卷积神经网络为基础,... 针对跨域服装检索中服装商品图像拍摄严格约束光照、背景等条件,而用户图像源自复杂多变的日常生活场景,难以避免背景干扰以及视角、姿态引起的服装形变等问题.提出一种结合注意力机制的跨域服装检索方法.利用深度卷积神经网络为基础,引入注意力机制重新分配不同特征所占比重,增强表述服装图像的重要特征,抑制不重要特征;加入短连接模块融合局部重要特征和整幅图像的高层语义信息,提取更具判别力的特征描述子;联合分类损失函数和三元组损失共同约束网络训练过程,基于类别信息缩小检索范围.采用标准的top-k检索精度作为评价指标,选择DeepFashion数据集与当前跨域服装检索常用方法进行对比,文中方法在top-20检索精度对比中取得了最好的检索性能(0.503).实验结果表明,该方法能有效地处理视角、姿态引起的服装形变和复杂背景的干扰,同时不需要大量的样本标注信息,有效地提高了跨域服装检索的精度. 展开更多
关键词 服装检索 跨场景 注意力机制 三元组损失
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部