To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ...To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.展开更多
The accessibility and mass transfer between catalytic sites and substrates/intermediates are essential to a catalyst's overall performance in oxygen electrocatalysis based energy devices.Here,we present an“in-sit...The accessibility and mass transfer between catalytic sites and substrates/intermediates are essential to a catalyst's overall performance in oxygen electrocatalysis based energy devices.Here,we present an“in-situ self-sacrifice template etching strategy”for reconstructing MOF-derived M-N-C catalysts,which introduces micro-meso-macro pores with continuous apertures in a wide range and a central hollowout structure to optimize the electrochemical oxygen redox kinetics.It is realized via one-step pyrolysis of ZIF-8 single crystal epitaxially coating on a multi-functional template of the Fe,Co co-loaded mesoporous ZnO sphere.The ZnO core is reduced during the general pyrolysis of ZIF-8 into M-N-C and acts as a pore former to etch the surrounding ZIF-8 shell into diverse channels anchoring highly exposed Fe and Co-based active sites with edge enrichment.The redesigned catalyst reveals apparent structural benefits towards enhanced oxygen redox kinetics as bifunctional cathode catalysts of rechargeable zinc-air battery compared with the primitive bulk M-N-C catalysts and the mixture of commercial Pt/C and Ir/C.The unique structure-based activity advantages,the omitted template removal step and good template compatibility during synthesis make the strategy universal for the channel engineering of electrocatalysts.展开更多
基金The National Natural Science Foundation of China(No.69973007).
文摘To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.
基金financially supported by the National Natural Science Foundation of China(Nos.51922008,52072114 and 51872075)the 111 Project(No.D17007)+1 种基金Henan Center for Outstanding Overseas Scientists(No.GZS2022017)Xinxiang Major Science and Technology Projects(No.21ZD001)。
文摘The accessibility and mass transfer between catalytic sites and substrates/intermediates are essential to a catalyst's overall performance in oxygen electrocatalysis based energy devices.Here,we present an“in-situ self-sacrifice template etching strategy”for reconstructing MOF-derived M-N-C catalysts,which introduces micro-meso-macro pores with continuous apertures in a wide range and a central hollowout structure to optimize the electrochemical oxygen redox kinetics.It is realized via one-step pyrolysis of ZIF-8 single crystal epitaxially coating on a multi-functional template of the Fe,Co co-loaded mesoporous ZnO sphere.The ZnO core is reduced during the general pyrolysis of ZIF-8 into M-N-C and acts as a pore former to etch the surrounding ZIF-8 shell into diverse channels anchoring highly exposed Fe and Co-based active sites with edge enrichment.The redesigned catalyst reveals apparent structural benefits towards enhanced oxygen redox kinetics as bifunctional cathode catalysts of rechargeable zinc-air battery compared with the primitive bulk M-N-C catalysts and the mixture of commercial Pt/C and Ir/C.The unique structure-based activity advantages,the omitted template removal step and good template compatibility during synthesis make the strategy universal for the channel engineering of electrocatalysts.