期刊文献+
共找到5,020篇文章
< 1 2 250 >
每页显示 20 50 100
Natural Homologous Triploidization and DNA Methylation in SARII-628,a Twin-seedling Line of Rice (Oryza sativa) 被引量:2
1
作者 PENG Hai ZHANG Hong-yu +3 位作者 LI Yun XU Pei-zhou WANG Xu-dong WU Xian-jun 《Rice science》 SCIE 2007年第4期265-271,共7页
A total of five pairs of diploidotriploid twin-seedlings (a diploid seedling and a triploid seedling emerged from a grain) were selected out from 4500 pairs of seedlings from SARII-628, a twin-seedling rice line. SS... A total of five pairs of diploidotriploid twin-seedlings (a diploid seedling and a triploid seedling emerged from a grain) were selected out from 4500 pairs of seedlings from SARII-628, a twin-seedling rice line. SSR analysis indicated that no difference between the diploid seedling and corresponding triploid seedling in a twin-seedling was found at the 310 loci, indicating that there was no obvious change in DNA primary structure. A modified AFLP technique 'MSAP (methylation-sensitive AFLP)' was used to analyze methylation mutation. Although no methylation mutation was noted among the five diploids, 29 methylation mutation loci were found from the corresponding triploids. This suggested that methylation mutation happened rapidly on Mogeneration after natural homologous triploidization. The mutations were classified into 10 types, including 3 increased types, 3 decreased types and 4 undecided types of methylation-degrees. The bands of 22 loci were sequenced and then those sequences were searched through website. The result showed that the methylation mutation involved into the whole rice genome and the 12 pairs of chromosomes. The mutation trend was site-related and there were different mutation loci for different triploids, which foretold that SARII-628 would have different evolution fates after natural homologous triploidization. 展开更多
关键词 twin-seedling DIPLOID triploidization dna methylation rice (Oryza sativa)
下载PDF
Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state 被引量:1
2
作者 Yubo Wang Ling Zhang +6 位作者 Tianjie Lyu Lu Cui Shunying Zhao Xuechun Wang Meng Wang Yongjun Wang Zixiao Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2229-2239,共11页
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec... Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke. 展开更多
关键词 dna demethylation dna methylation DNMT3A functional outcome hyperinflammatory state INTERLEUKIN NEUROINFLAMMATION STROKE TET2
下载PDF
Advances in microfluidic-based DNA methylation analysis 被引量:1
3
作者 Jiwen Li Tiechuan Li Xuexin Duan 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期116-134,共19页
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ... DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis. 展开更多
关键词 Microfluidic chip dna methylation analysis Molecular analysis High throughput Low cost
下载PDF
Unveiling DNA methylation in Alzheimer’s disease:a review of array-based human brain studies 被引量:1
4
作者 Victoria Cunha Alves Eva Carro Joana Figueiro-Silva 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2365-2376,共12页
The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centere... The intricacies of Alzheimer’s disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms,particularly DNA methylation.This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer’s disease neuropathology.The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer’s disease progression.The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus.Notably,ANK1 hypermethylation,a protein implicated in neurofibrillary tangle formation,was recurrently identified in the entorhinal cortex.Further,the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3,RHBDF2,and MCF2L,potentially influencing neuroinflammatory processes.The complex role of BIN1 in late-onset Alzheimer’s disease is underscored by its association with altered methylation patterns.Despite the disparities across studies,these findings highlight the intricate interplay between epigenetic modifications and Alzheimer’s disease pathology.Future research efforts should address methodological variations,incorporate diverse cohorts,and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer’s disease progression. 展开更多
关键词 Alzheimer’s disease ANK1 BIN1 dna methylation epigenome-wide association studies HOXA3 MCF2L RHBDF2
下载PDF
Rice melatonin deficiency causes premature leaf senescence via DNA methylation regulation
5
作者 Yue Lu Ahmed Gharib +15 位作者 Rujia Chen Hanyao Wang Tianyun Tao Zhihao Zuo Qing Bu Yanze Su Yaoqing Li Yanmo Luo Hamdi F.El-Mowafi Zhichao Wang Qianfeng Huang Shuting Wang Yang Xu Pengcheng Li Chenwu Xu Zefeng Yang 《The Crop Journal》 SCIE CSCD 2024年第3期721-731,共11页
In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogr... In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogramming,especially of genes involved in chlorophyll and carbon metabolism,redox regulation,and transcriptional regulation,during dark-induced leaf senescence.Hypomethylation of mCG and mCHG in the melatonin-deficient rice mutants was associated with the expression change of both protein-coding genes and transposable element-related genes.Changes in gene expression and DNA methylation in the melatonin-deficient mutants were compensated by exogenous application of melatonin.A decreased S-adenosyl-L-methionine level may have contributed to the DNA methylation variations in rice mutants of melatonin deficiency under dark conditions. 展开更多
关键词 MELATONIN Premature leaf senescence RICE dna methylation Epigenetic regulation
下载PDF
Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants
6
作者 Atiqur Rahman Hasan Sofiur Rahman +9 位作者 Shakil Uddin Naima Sultana Shirin Akhter Ujjal Kumar Nath Shamsun Nahar Begum Mazadul Islam Afroz Naznin Nurul Amin Sharif Ahmed Akbar Hossain 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期1-19,共19页
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge... The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming. 展开更多
关键词 dna methylation EPIGENETICS CMS male sterility chromatin architecture gene expression higher plants
下载PDF
Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys
7
作者 Ling Wang Wei-Qiang Liu +3 位作者 Juan Du Meng Li Rui-Feng Wu Ming Li 《Zoological Research》 SCIE CSCD 2024年第5期1013-1026,共14页
DNA methylation plays a crucial role in environmental adaptations.Here,using whole-genome bisulfite sequencing,we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed mo... DNA methylation plays a crucial role in environmental adaptations.Here,using whole-genome bisulfite sequencing,we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey(Rhinopithecus bieti)and the closely related golden snub-nosed monkey(R.roxellana).Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys,suggesting a higher prevalence of hypermethylated genomic regions in the former.Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion,vesicular formation and trafficking,hemoglobin function,cell cycle regulation,and neuronal differentiation.These results suggest that the high-altitude-related epigenetic modifications are extensive,involving a complete adaptation process from the inhibition of single Ca^(2+)channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation.Functional assays demonstrated that overexpression or down-regulation of candidate genes,such as SNX10,TIMELESS,and CACYBP,influenced cell viability under stress conditions.Overall,this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations,thereby deepening our understanding of the mechanisms underlying environmental adaptations. 展开更多
关键词 Snub-nosed monkeys Whole-genome bisulfite sequencing dna methylation High-altitude adaptation
下载PDF
Methylome and transcriptome data integration reveals potential roles of DNA methylation and candidate biomarkers of cow Streptococcus uberis subclinical mastitis 被引量:3
8
作者 Mengqi Wang Nathalie Bissonnette +6 位作者 Mario Laterriere Pier‑Luc Dudemaine David Gagne Jean‑Philippe Roy Xin Zhao Marc‑Andre Sirard Eveline M.Ibeagha‑Awemu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期593-613,共21页
Background:Mastitis caused by different pathogens including Streptococcus uberis(S.uberis)is responsible for huge economic losses to the dairy industry.In order to investigate the potential genetic and epigenetic regu... Background:Mastitis caused by different pathogens including Streptococcus uberis(S.uberis)is responsible for huge economic losses to the dairy industry.In order to investigate the potential genetic and epigenetic regulatory mecha‑nisms of subclinical mastitis due to S.uberis,the DNA methylome(whole genome DNA methylation sequencing)and transcriptome(RNA sequencing)of milk somatic cells from cows with naturally occurring S.uberis subclinical mastitis and healthy control cows(n=3/group)were studied.Results:Globally,the DNA methylation levels of CpG sites were low in the promoters and first exons but high in inner exons and introns.The DNA methylation levels at the promoter,first exon and first intron regions were nega‑tively correlated with the expression level of genes at a whole‑genome‑wide scale.In general,DNA methylation level was lower in S.uberis‑positive group(SUG)than in the control group(CTG).A total of 174,342 differentially methylated cytosines(DMCs)(FDR<0.05)were identified between SUG and CTG,including 132,237,7412 and 34,693 DMCs in the context of CpG,CHG and CHH(H=A or T or C),respectively.Besides,101,612 methylation haplotype blocks(MHBs)were identified,including 451 MHBs that were significantly different(dMHB)between the two groups.A total of 2130 differentially expressed(DE)genes(1378 with up‑regulated and 752 with down‑regulated expression)were found in SUG.Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with signifi‑cant changes in their methylation levels and/or gene expression changes(MetGDE genes,MethGET P‑value<0.001).Functional enrichment of genes harboring≥15 DMCs,DE genes and MetGDE genes suggest significant involvement of DNA methylation changes in the regulation of the host immune response to S.uberis infection,especially cytokine activities.Furthermore,discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers,including 6 DE genes,15 CpG‑DMCs and 5 dMHBs that discriminated between SUG and CTG.Conclusion:The integration of methylome and transcriptome of milk somatic cells suggests the possible involve‑ment of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S.uberis.The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of subclinical mastitis and breeding for mastitis resistance. 展开更多
关键词 Discriminant biomarkers Gene expression Genome‑wide dna methylation pattern Immune processes and pathways methylation haplotype block Milk somatic cell Streptococcus uberis Subclinical mastitis
下载PDF
A Metaheuristic Technique for Cluster-Based Feature Selection of DNA Methylation Data for Cancer
9
作者 Noureldin Eissa Uswah Khairuddin +1 位作者 Rubiyah Yusof Ahmed Madani 《Computers, Materials & Continua》 SCIE EI 2023年第2期2817-2838,共22页
Epigenetics is the study of phenotypic variations that do not alter DNA sequences.Cancer epigenetics has grown rapidly over the past few years as epigenetic alterations exist in all human cancers.One of these alterati... Epigenetics is the study of phenotypic variations that do not alter DNA sequences.Cancer epigenetics has grown rapidly over the past few years as epigenetic alterations exist in all human cancers.One of these alterations is DNA methylation;an epigenetic process that regulates gene expression and often occurs at tumor suppressor gene loci in cancer.Therefore,studying this methylation process may shed light on different gene functions that cannot otherwise be interpreted using the changes that occur in DNA sequences.Currently,microarray technologies;such as Illumina Infinium BeadChip assays;are used to study DNA methylation at an extremely large number of varying loci.At each DNA methylation site,a beta value(β)is used to reflect the methylation intensity.Therefore,clustering this data from various types of cancers may lead to the discovery of large partitions that can help objectively classify different types of cancers aswell as identify the relevant loci without user bias.This study proposed a Nested Big Data Clustering Genetic Algorithm(NBDC-GA);a novel evolutionary metaheuristic technique that can perform cluster-based feature selection based on the DNA methylation sites.The efficacy of the NBDC-GA was tested using real-world data sets retrieved from The Cancer Genome Atlas(TCGA);a cancer genomics program created by the NationalCancer Institute(NCI)and the NationalHuman Genome Research Institute.The performance of the NBDC-GA was then compared with that of a recently developed metaheuristic Immuno-Genetic Algorithm(IGA)that was tested using the same data sets.The NBDC-GA outperformed the IGA in terms of convergence performance.Furthermore,the NBDC-GA produced a more robust clustering configuration while simultaneously decreasing the dimensionality of features to a maximumof 67%and of 94.5%for individual cancer type and collective cancer,respectively.The proposed NBDC-GA was also able to identify two chromosomes with highly contrastingDNAmethylations activities that were previously linked to cancer. 展开更多
关键词 CANCER clustering dna methylation feature selection metaheuristic technique the cancer genome atlas
下载PDF
Stress Treatments and DNA Methylation Affected the Somatic Embryogenesis of Citrus Callus 被引量:21
10
作者 郝玉金 邓秀新 《Acta Botanica Sinica》 CSCD 2002年第6期673-677,共5页
The evaluation on the callus embryogenesis capacity of 15 genotypes of citrus showed that stress treatments were conducive to somatic embryogenesis and could enhance the recovery of the missed capacity of embryogenes... The evaluation on the callus embryogenesis capacity of 15 genotypes of citrus showed that stress treatments were conducive to somatic embryogenesis and could enhance the recovery of the missed capacity of embryogenesis for some genotypes. Randomly amplified polymorphic DNA (RAPD) and methylation sensitive amplified polymorphism (MSAP) analysis indicated that there existed significant differences in DNA methylation status between the callus capable of producing somatic embryoids and that which missed the embryogenesis capacity of the same genotype Newhall navel orange ( Citrus sinensis Osb. cv. Newhall). The DNA methylation level of the former was lower than that of the latter. However, RAPD profiles did not show any difference between these two kinds of callus. 展开更多
关键词 DESICCATION low_temperature treatment dna methylation somatic embryogenesis RAPD MSAP
下载PDF
Eucaryotic DNA Methylation and Gene Mutation 被引量:1
11
作者 刘次全 王莹 +1 位作者 黄京飞 柳维波 《Zoological Research》 CAS CSCD 1993年第S1期89-98,共10页
5-methylcytosine (m5C) as a rare base exists in eucaryotic genomes, it is a normal constituent of many eucaryotic DNA, whose existence is a character of eucaryotic DNA. In the regular physiological conditions, cytosin... 5-methylcytosine (m5C) as a rare base exists in eucaryotic genomes, it is a normal constituent of many eucaryotic DNA, whose existence is a character of eucaryotic DNA. In the regular physiological conditions, cytosine residue of eucaryotic DNA is methylated to be popular. Up to the present, many people consider that the m5C may be mutation hotspots by the m5C deamination leading to gene mutation. Our theoretical investigations indicated that the spontaneous mutation caused by the transition of G - C-A - T, in eukaryotic DNA, may be a result caused by the tautomer changing base pairs and may also be caused by other factor actions, however it could not be caused by the deamination of m5C. 展开更多
关键词 dna methylation 5-methylcytosine DEAMINATION Eucaryotic dna Gene mutation
下载PDF
Characterization of MyDNMT1 and Changes of Global DNA Methylation during the Embryonic Development in Mizuhopecten yessoensis
12
作者 许艺迪 刘卫东 +1 位作者 滕伟鸣 于佐安 《Agricultural Science & Technology》 CAS 2017年第11期2147-2154,共8页
DNA methylation is a critical epigenetic mechanism that influences gene transcription, genomic stability, X-chromosome inactivation and other factors, and appropriate DNA methylation is crucial in development. DNA met... DNA methylation is a critical epigenetic mechanism that influences gene transcription, genomic stability, X-chromosome inactivation and other factors, and appropriate DNA methylation is crucial in development. DNA methyltransferase 1 (DNMT1) plays an important role in maintaining the established methylation pattern during DNA replication. Although the effect of DNA methylation on embryonic development has been well known in vertebrates, little research has been carried out in invertebrates, especially in marine bivalves. In this study, the DNMT1 gene (MyDNMT1) was firstly identified from Mizuhopecten yessoensis. The full-length cDNA of MyDNMT1 was 5 039 bp, consisted of a 5' untranslated region (5'-UTR) of 79 bp, a 3' untranslated region (3'-UTR) of 199 bp, and a 4 761 bp open reading frame (ORF) encoding a peptide of 1 586 amino acids without a putative signal peptide. The relative mRNA expression level of MyDNMT1 was measured during the embryonic development of M. ydssoensis using real-time PCR, which revealed that the level at stage zygote and trochophore were significantly higher than that at other stages. We further examined the global DNA methylation during development by colorimetric method. The results showed that the methylation level was increased and reached the peak at blastula stage, then dramatically decreased, and fluctuated at early D-shaped larva stage. This study provided greater insight into the DNA methylation of embryonic development, which obtained a better understanding of the relationship between the DNA methylation and the embryonic development in bivalve mollusks. 展开更多
关键词 Mizuhopecten yessoensis dna methylation dna (cytosine-5) methyl- transferase 1 CLONING Global dna methylation
下载PDF
Exploring Genome-wide DNA Methylation Profiles Altered in Kashin-Beck Disease Using Infinium Human Methylation 450 Bead Chips 被引量:4
13
作者 SHI Xiao Wei SHI Bo Hui +3 位作者 LYU Ai Li ZHANG Feng ZHOU Tian Tian GUO Xiong 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2016年第7期539-543,共5页
To understand how differentially methylated genes(DMGs)might affect the pathogenesis of Kashin-Beck disease(KBD).Genome-wide methylation profiling of whole blood from 12matched KBD and controls pairs was performed... To understand how differentially methylated genes(DMGs)might affect the pathogenesis of Kashin-Beck disease(KBD).Genome-wide methylation profiling of whole blood from 12matched KBD and controls pairs was performed using a high-resolution Infinium 450 K methylation array.In total,97 CpG sites were differentially 展开更多
关键词 KBD Exploring Genome-wide dna methylation Profiles Altered in Kashin-Beck Disease Using Infinium Human methylation 450 Bead Chips dna
下载PDF
Aberrant DNA Methylation in Human Cancers 被引量:1
14
作者 黎文 陈碧峰 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第6期798-804,共7页
DNA methylation, one of the best-characterized epigenetic modifications, plays essential roles in diseases, including human cancers. In recent years, our understanding on DNA methylation with human cancers has made si... DNA methylation, one of the best-characterized epigenetic modifications, plays essential roles in diseases, including human cancers. In recent years, our understanding on DNA methylation with human cancers has made significant progress, which was facilitated by stunning development in the analysis of the human methylome of multiple cancer types. In this review, recent developments in the characterization of aberrant DNA methylation involved in human cancers development were discussed with special emphasis on the mechanisms of aberrant DNA methylation in human cancers. We also summarize the recent treatment strategy for human cancers with de-methylation drugs. 展开更多
关键词 EPIGENETICS aberrant dna methylation human cancers TREATMENT
下载PDF
Analysis of DNA methylation in different tissues of Fenneropenaeus chinensis from the wild population and Huanghai No. 1 被引量:2
15
作者 HE Yuying DU Ying +3 位作者 LI Jian LIU Ping WANG Qingyin LI Zhaoxia 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第12期175-180,共6页
DNA methylation plays an important role in the regulation of gene expression during biological development and tissue differentiation in eukaryotes. A methylation sensitive amplification polymorphism(MSAP) including... DNA methylation plays an important role in the regulation of gene expression during biological development and tissue differentiation in eukaryotes. A methylation sensitive amplification polymorphism(MSAP) including digestion, pre-selective amplification and selective amplification was optimized to compare the levels of DNA cytosine methylation at CCGG sites in muscle, gill and hemocyte from the wild populations and the selective breeding of Huanghai No. 1 of Fenneropenaeus chinensis, respectively. Significant differences in cytosine methylation levels among three tissues in two populations were detected. The average DNA methylation ratios in muscle, gill and hemocyte of the wild population were 23.1%, 22.3% and 19.7%, while those were 21.4%, 19.6%,and 18.9% in Huanghai No. 1, respectively. The DNA methylation levels of gill from the two populations were highly significant(P〈0.01), the difference of muscle was significant(P〈0.05), while in hemocyte, there were no significant differences(P〉0.05). DNA polymorphic methylation of gill and hemocyte between the wild population and Huanghai No. 1 varies to some extent, while those of muscle kept in a balanced degree. Furthermore,polymorphic methylation was associated with demethylation and methylation of CCGG loci. 展开更多
关键词 methylation sensitive amplification polymorphism dna methylation Fenneropenaeus chinensis
下载PDF
Coordinated transcription of ANRIL and P16 genes is silenced by P16 DNA methylation 被引量:3
16
作者 Ying Gan Wanru Ma +5 位作者 Xiuhong Wang Juanli Qiao Baozhen Zhang Chenghua Cui Zhaojun Liu Dajun Deng 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2018年第1期93-103,共11页
Objective: To investigate the relationship between the transcription of ANRIL, P15, P14 and P16 at the same locus and the regulation mechanism of ANRIL.Methods: Publicly available database of Cancer Cell Line Encycl... Objective: To investigate the relationship between the transcription of ANRIL, P15, P14 and P16 at the same locus and the regulation mechanism of ANRIL.Methods: Publicly available database of Cancer Cell Line Encyclopedia(CCLE) was used in bioinformatic analyses. Methylation of Cp G islands was detected by denaturing high performance liquid chromatography(DHPLC). Gene transcript levels were determined using quantitative real-time polymerase chain reaction(q RTPCR) assays. An engineered P16-specific transcription factor and DNA methyltransferase were used to induce P16-specific DNA demethylation and methylation.Results: The expression level of ANRIL was positively and significantly correlated with that of P16 but not with that of P15 in the CCLE database. This was confirmed in human cell lines and patient colon tissue samples. In addition, ANRIL was significantly upregulated in colon cancer tissues. Transcription of ANRIL and P16 was observed only in cell lines in which the P16 alleles were unmethylated and not in cell lines with fully methylated P16 alleles.Notably, P16-specific methylation significantly decreased transcription of P16 and ANRIL in BGC823 and GES1 cells. In contrast, P16-specific demethylation re-activated transcription of ANRIL and P16 in H1299 cells(P〈0.001).Alteration of ANRIL expression was not induced by P16 expression changes.Conclusions: ANRIL and P16 are coordinately transcribed in human cells and regulated by the methylation status of the P16 Cp G islands around the transcription start site. 展开更多
关键词 ANRIL P16 CpG island dna methylation transcriptional regulation
下载PDF
Analysis of DNA methylation in different maize tissues 被引量:27
17
作者 Yanli Lu, Tingzhao Rong, Moju Cao Maize Research Institute of Sichuan Agriculture University/Key Laboratory of Crop Genetic Resource and Improvement, Ministry of Education, Ya’an, 625014, China 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第1期41-48,共8页
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism... DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5 ' -CCGG-3 ' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues. 展开更多
关键词 dna methylation MSAP isoschizomers
下载PDF
Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones 被引量:10
18
作者 Jinghe Liu Xingwei Liang +4 位作者 Jiaqiao Zhu Liang Wei Yi Hou Da-Yuan Chen Qing-Yuan Sun 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第9期559-568,共10页
High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the importa... High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation. DNA methylation is established and maintained by DNA methyltransferases (DNMTs), therefore, it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs. Since DNA methylation can strongly inhibit gene expression, aberrant DNA methylation of DNMT genes may disturb gene expression. But presently, it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos. In our study, we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a, Dnmt3b, Dnmtl and Dnmt2 in four aborted bovine clones. Using bisulfite sequencing method, we found that 3 out of 4 aborted bovine clones (AF1, AF2 and AF3) showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b, indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed. However, the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF) fetuses. Besides, we found that the 5' regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults, IVF fetuses, sperm and aborted clones. Together, our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones. 展开更多
关键词 dna methylation dna methyltransferase epigenetic reprogramming somatic cell nuclear transfer COW
下载PDF
Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under highaltitude hypoxia 被引量:9
19
作者 Bo Zhang Dongmei Ban +4 位作者 Xiao Gou Yawen Zhang Lin Yang Yangzom Chamba Hao Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2019年第2期365-374,共10页
Background: Tibetan pigs, which inhabit the Tibetan Plateau, exhibit distinct phenotypic and physiological characteristics from those of lowland pigs and have adapted well to the extreme conditions at high altitude.Ho... Background: Tibetan pigs, which inhabit the Tibetan Plateau, exhibit distinct phenotypic and physiological characteristics from those of lowland pigs and have adapted well to the extreme conditions at high altitude.However, the genetic and epigenetic mechanisms of hypoxic adaptation in animals remain unclear.Methods: Whole-genome DNA methylation data were generated for heart tissues of Tibetan pigs grown in the highland(TH, n = 4) and lowland(TL, n = 4), as well as Yorkshire pigs grown in the highland(YH, n = 4) and lowland(YL, n = 4), using methylated DNA immunoprecipitation sequencing.Results: We obtained 480 million reads and detected 280679, 287224, 259066, and 332078 methylation enrichment peaks in TH, YH, TL, and YL, respectively. Pairwise TH vs. YH, TL vs. YL, TH vs. TL, and YH vs. YL comparisons revealed6829, 11997, 2828, and 1286 differentially methylated regions(DMRs), respectively. These DMRs contained 384, 619,192, and 92 differentially methylated genes(DMGs), respectively. DMGs that were enriched in the hypoxia-inducible factor 1 signaling pathway and pathways involved in cancer and hypoxia-related processes were considered to be important candidate genes for high-altitude adaptation in Tibetan pigs.Conclusions: This study elucidates the molecular and epigenetic mechanisms involved in hypoxic adaptation in pigs and may help further understand human hypoxia-related diseases. 展开更多
关键词 dna methylation HYPOXIC adaptation MeDIP-seq TIBETAN PIG
下载PDF
Analysis of DNA Methylation Level by Methylation-Sensitive Amplification Polymorphism in Half Smooth Tongue Sole(Cynoglossus semilaevis)Subjected to Salinity Stress 被引量:4
20
作者 LI Siping HE Feng +5 位作者 WEN Haishen LI Jifang SI Yufeng LIU Mingyuan HE Huiwen HUANG Zhengju 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第2期269-278,共10页
Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes,which can help the animals with development,growth and survival.In this study,we assessed th... Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes,which can help the animals with development,growth and survival.In this study,we assessed the DNA methylation levels in three tissues(gonad,kidney and gill) of half smooth tongue sole under the salinity stress.The methylation-sensitive amplification polymorphism(MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli.Fish were subjected to 15 salinity treatment for 7 and 60 days,respectively.A total of 11259 fragments were amplified with 8 pairs of selective primers.The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed,which were 32.76% and 47.32% in gonad;38.13% and 37.69% in kidney;37.58% and 34.96% in gill,respectively.In addition,the significant difference was observed in gonad between females and males,indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes.Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days,probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing.With the adjustment for 60 days,total and hemi-methylation prominently went back to its normal levels to obtain equilibrium.Particularly,full methylation levels were steady along with salinity stress to maintain the stability of gene expression.Additionally,the data showed that gonads in females and gills in males were superior in adaptability.As a result,DNA methylation regulates tissue-specific epiloci,and may respond to salinity stress by regulating gene expression to maintain animal survival and activity. 展开更多
关键词 dna methylation diversity HALF SMOOTH TONGUE SOLE salinity stress MSAP
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部