The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cul...The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cultivars of wheat (Triticum aestivum L.) exposed to 4℃. Plants were sampled on days 2, 14, 21 and 35 of exposure to 4℃. The final leaf number (FLN) was determined throughout the vernalization periods (0, 7, 14, 24, and 35 d) at 4℃. The final leaf number decreased until days 24 and 35 in Sardari and Norstar eultivars, respectively, indicating the vernalization saturation at these times. No clear changes were detected in the final leaf number of Kohdash cultivar, verifying no vernalization requirement for this spring wheat cultivar. Comparing with control, clear cold-induced 2-fold increases in proteins quantity occurred after 48 h following the 4℃-treatment in the leaves of the both winter wheat cultivars but, such response was not detected in the spring cultivar. However, the electrophoretic protein patterns showed between-cultivar and between-temperature treatment differences. With increasing exposure time to 4℃, the winter cultivars tended to produce more HMW polypeptides than the spring cultivar. Similar proteins were induced in both Sardari and Norstar winter wheat cultivars, however, the long vernalization requirement in Norstar resulted in high level and longer duration of expression of cold-induced proteins compared to Sardari with a short vernalization requirement. These observations indicate that vernalization response regulates the expression of low temperature (LT) tolerance proteins and determines the duration of expression of LT- induced proteins.展开更多
Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total prote...Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total proteins were extracted from wheat (Triticum aestivum L.) leaves by a conventional trichloroacetic acid (TCA)/acetone method and a protocol first developed in this work. Phytate/Ca2+ fractionation and TCA/acetone precipitation were combined to design an improved TCA/acetone method. The extracted proteins were analysed by two-dimensional gel electrophoresis (2-DE). The resulting 2-DE images were compared to reveal major differences. The results showed that large quantities of Rubisco were deleted from wheat leaf proteins prepared by the improved method. As many as (758±4) protein spots were detected from 2-DE images of protein extracts obtained by the improved method, 130 more than those detected by the TCA/acetone method. Further analysis indicated that more protein spots could be detected at regions of pI 4.00-4.99 and 6.50-7.00 in the improved method-based 2-DE images. Our findings indicated that the improved method is an efficient protein preparation protocol for separating low-abundance proteins in wheat leaf tissues by 2-DE analysis. The proposed protocol is simple, fast, inexpensive and also applicable to protein preparations of other plants.展开更多
Protoplasts derived from common wheat (Triticum aestivum L,. cv. Jinan 177) were fused with UV-treated protoplasts of Agropyron elongatum. (Host) Nevski by PEG method, and fertile asymmetric somatic hybrid plants rese...Protoplasts derived from common wheat (Triticum aestivum L,. cv. Jinan 177) were fused with UV-treated protoplasts of Agropyron elongatum. (Host) Nevski by PEG method, and fertile asymmetric somatic hybrid plants resembling wheat morphology were obtained. The F-2 hybrid plants could be divided into 3 types according to their morphology. Type I hybrids had high and loosely standing stalks with big spikes and grains. Type ii hybrids were dwarf and compact in shape with high tillering ability and smaller spikes. Type III hybrids were similar to type I as a whole but had more compact and erect spikes. All the F-2 hybrid lines were superior to wheat in seed protein content, although some difference existed between themselves. Protein analysis of immature embryos and flag leaves from hybrids by two-dimensional electrophoresis showed that they possessed characteristic proteins of both parents and some new proteins. There existed also some different kinds of proteins in different lines.展开更多
Zinc finger protein(ZFP) genes comprise a large and diverse gene family, and are involved in biotic and abiotic stress responses in plants. In this study, a total of 126 ZFP genes classified into various types in wh...Zinc finger protein(ZFP) genes comprise a large and diverse gene family, and are involved in biotic and abiotic stress responses in plants. In this study, a total of 126 ZFP genes classified into various types in wheat were characterized and subjected to expression pattern analysis under inorganic phosphate(Pi) deprivation. The wheat ZFP genes and their corresponding GenBank numbers were obtained from the information of a 4×44K wheat gene expression microarray chip. They were confirmed by sequence similarity analysis and named based on their homologs in Brachypodium distachyon or Oriza sativa. Expression analysis based on the microarray chip revealed that these ZFP genes are categorized into 11 classes according to their gene expression patterns in a 24-h of Pi deprivation regime. Among them, ten genes were differentially up-regulated, ten genes differentially downregulated, and two genes both differentially up- and down-regulated by Pi deprivation. The differentially up- or down-regulated genes exhibited significantly more or less transcripts at one, two, or all of the checking time points(1, 6, and 24 h) of Pi stress in comparison with those of normal growth, respectively. The both differentially up- and down-regulated genes exhibited contrasting expression patterns, of these, TaWRKY70;5 showed significantly up-regulated at 1 and 6 h and down-regulated at 24 h whereas TaAN1AN20-8;2 displayed significantly upregulated at 1 h and downregulated at 6 h under deprivation Pi condition. Real time PCR analysis confirmed the expression patterns of the differentially expressed genes obtained by the microarray chip. Our results indicate that numerous ZFP genes in wheat respond to Pi deprivation and have provided further insight into the molecular basis that plants respond to Pi deprivation mediated by the ZFP gene family.展开更多
The male-sterile lines with Ms2 gene were highly evaluated in recurrent selection in wheat (Triticum aestivum L.). Three populations C6 (population after six cycles of selection), C7 (population after seven cycle...The male-sterile lines with Ms2 gene were highly evaluated in recurrent selection in wheat (Triticum aestivum L.). Three populations C6 (population after six cycles of selection), C7 (population after seven cycles of selection), and C8 (population after eight cycles of selection) were constructed through recurrent selection with 12 parental materials (P). Acid polyacrymide gel electrophoresis (A-PAGE) analysis was used to identify gliadin patterns and evaluate the genetic diversity in 12 parents and three populations. A total of 63 bands were identified, of which 17 polymorphic bands and 7 unique bands were present in populations and seven polymorphic bands and four unique bands were present in parents. The number of polymorphic and unique bands decreased gradually from C6 to C8, especially for to- and y-gliadins. The genetic distances in C6, C7, and C8 were calculated. The distributions of genetic distance were different in three recurrent selection populations. From C6 to C8, the genetic distance was 0.2687, 0.2652 and 0.1987, respectively. Statistically significant differences were detected between C7 and C8 with the T value of 37.9718. The result of cluster analysis based on genetic similarity matrix of three populations fitted well to those of principle coordinates analysis (PCoA). Compared with 12 parents, almost all individuals of three populations are new genotypes. Most of the individuals from C6 and C7 could be divided into two groups, while most individuals of C8 were in one cluster. In conclusion, the results indicated that the genetic diversity was decreased severely according to the information revealed by A-PAGE, although some variations could be created in the recurrent selection. It was necessary to introduce diverse germplasm based on the genetic database of recurrent population to maintain and improve the breeding efficiency in the further program.展开更多
Mitogen-activated protein kinase (MPK) cascades consist of a set of kinase types (MPKKKs, MPKKs, MPKs) to establish conserved signal-transducing modules mediating plant growth, development as well as responses to ...Mitogen-activated protein kinase (MPK) cascades consist of a set of kinase types (MPKKKs, MPKKs, MPKs) to establish conserved signal-transducing modules mediating plant growth, development as well as responses to internal and external cues. In this study, the expression patterns of six MPKKK, two MPKK, and 11 MPK genes in wheat in responses to external treatments of phytohormones, including naphthylacetic acid (NAA), abscisic acid (ABA), 6-benzyladenine (6-BA), gibber- ellin (GA3), salisylic acid (SA), jasmonic acid (JA), and ethylene (ETH), were investigated. Expression analysis revealed that several of the MPK cascade genes are responses to the external phytohormone signaling. Of which, TaMPKKKA;3 is induced by 6-BA and NAA while TaMPK4 repressed by ETH, GA3, SA, and JA; TaMPKKKA, TaMPKKKA;3 and TaMPK1 are down-regulated by ETH and GA3whereas TaMPK9 and TaMPK12 repressed by ETH and JA in addition that TaMPK12 also repressed by GA3; TaMPK12;1 is down-regulated by ABA, GA3 and SA while TaMPK17 repressed by all exogenous phytonormones examined. TaMPK4, a MPK type gene previously characterized to mediate tolerance to phosphate (Pi) deprivation, was functionally evaluated for its role in mediation of responses of plants to exogenous GA3, ETH, SA, and JA. Results indicated that overexpression and antisense expression of TaMPK4 in tobacco dramatically modify the growth of seedlings upon treatments of GA3, SA and JA, in which the overexpressors behaved deteriorated growth feature whereas the seedlings with antisense expression of TaMPK4 exhibited improved seedling phenotype. The growth behaviors in lines overexpressing or antisensely expressing TaMPK4 are closely associated with the biomass and the corresponding hormone-associated parameters. These results demonstrated that TaMPK4 acts as a critical player in mediating the phyto- hormone signaling. Our findings have identified the phytohormone-responsive MPK cascade genes in wheat and provided a connection between the phytohormone-mediated responses and the MPK cascade pathways.展开更多
[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 16...[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 161 Chinese winter wheat cultivars from four regions. [Method] One hundred and sixty-one winter wheat varieties from China Wheat Zones I, II, III and IV (Table 1) were grown in a randomized block de- sign, in the 2009-2011 cropping season; and then the indexes for describing the grain morphological characteristics such as the thousand kernel weight (TKW), kernel length (KL), kernel width (KW) and kernel thickness (KT) were measured; the phytic acid content (PAC), protein content and sedimentation value were also determined; finally, the relationship between PAC and protein content, kernel characteristics were analyzed. [Result] The PAC in the cultivars tested ranged from 0.92% to 1.95% with a mean value of 1.41%. Protein content ranged from 12.60% to 19.20%, with a mean of 15.24%. Most (53.4%) of the wheat genotypes had a PAC value in the range of 1.25% to 1.55%. No significant correlation was found between PAC and protein content, sedimentation value, while protein content and SDS sedimentation value was significant correlated, which suggested the possibility of breeding wheat cultivars that have a low PAC but a high protein content and good gluten quality. There was a high correlation between TKW and KW (,.=0.79), KL (r=0.50) and KT (r=0.64). PAC was found having no significant correlation with TKW, KW, KL and KT. [Conclusion] The result suggests the possibility of breeding wheat cultivars that have a low PAC but high kernel weight.展开更多
Sharp eyespot,mainly caused by the soil-borne fungus Rhizoctonia cerealis,affects wheat(Triticum aestivum L.)production worldwide.In this study,we isolated TaCML36 gene encoding a wheat calmodulin-like protein,and stu...Sharp eyespot,mainly caused by the soil-borne fungus Rhizoctonia cerealis,affects wheat(Triticum aestivum L.)production worldwide.In this study,we isolated TaCML36 gene encoding a wheat calmodulin-like protein,and studied its defense role in protection against R.cerealis.Transcription of TaCML36 was significantly elevated by both R.cerealis infection and exogenous ethylene treatment.Transcription was higher in resistant wheat lines than in susceptible ones.There were copies of TaCML36 on chromosomes 5A,5B,and 5D.The TaCML36 protein is composed of 183 amino acids and contains two calcium-binding EFhand domains.Subcellular localization assays in wheat indicated that TaCML36 localizes in both the cytoplasm and nucleus.Virus-induced gene silencing and disease assessment indicated that compared to the controls,TaCML36-silenced wheat plants displayed significantly reduced resistance to R.cerealis and had greater fungal biomass,suggesting that knockdown of TaCML36 impaired host resistance.Knockdown of TaCML36 also significantly repressed expression of pathogenesis-related genes such as Chitinase 1,PDF35,and PR17C,the ethylene response factor-encoding gene TaPIE1,and ethylene biosynthesis gene ACO2.Collectively,our results suggest that TaCML36 positively participates in the innate immune response to R.cerealis infection by modulating expression of defense-associated genes possibly in the ethylene signaling pathway.展开更多
The gluten proteins of wheat grain are responsible for visco-elastic properties of flour,but they also trigger the immune-response of celiac disease.In this work,two low-gliadin RNA interference(RNAi)wheat lines that ...The gluten proteins of wheat grain are responsible for visco-elastic properties of flour,but they also trigger the immune-response of celiac disease.In this work,two low-gliadin RNA interference(RNAi)wheat lines that differ for the promoter driving the silencing(D-hordein andγ-gliadin promoters for D783 and D793 lines,respectively),were characterized at transcriptomic,and protein fraction levels in the grain.Silencing of gliadins provides a readjustment in the grain protein fractions that also affects to the nongluten proteins(NGP),which were increased in both RNAi lines.Determination of wheat gluten by means of the R5 monoclonal antibody also showed a strong reduction in the content of gluten in both RNAi lines.Moreover,fructans,an oligosaccharide linked with the development of non-celiac wheat sensitivity(NCWS)were also significantly decreased in RNAi lines.The down-regulation of gliadins fractions also impacts to other metabolic processes,particularly on carbohydrate metabolism,enzyme regulator activity and response to stress.Genes and transcription factors regulated by ABA were up-regulated,which could suggest the implication of this phytohormone on the stress response observed in the RNAi lines.展开更多
A new, improved version of the catalog of 182 alleles at the six Gli loci of common wheat(T.aestivum L.) shown in electrophoregrams of 128 standard genotypes was used for analysis of1060 cultivars and lines bred in th...A new, improved version of the catalog of 182 alleles at the six Gli loci of common wheat(T.aestivum L.) shown in electrophoregrams of 128 standard genotypes was used for analysis of1060 cultivars and lines bred in the 20 th century. The most frequent alleles in the studied germplasm occurred with frequencies of 18%–40%, with 30 unique alleles, one in each cultivar. Extremely high genetic diversity was found(average H for the six main Gli loci was0.870 ± 0.046), nearly identical in winter(H = 0.831) and spring(H = 0.856) wheats but differing among 28 groups of cultivars released in 22 countries. Each country or region was characterized by its own specific set of the most frequent Gli alleles, and the 28 cultivar groups formed five main relationship clusters if polymorphism at the six Gli loci was considered. However, different levels of similarity between groups of cultivars were found if polymorphism of the A, B, or D genomes of common wheat was tested separately. In general, the 20 th century germplasm of common wheat was differentiated and structured by country or region and cultivar type(spring or winter). Each elemental genome(in particular, A and D) contributed to the structure of the polymorphism studied. We propose that the structure of the wheat germplasm was a result of natural selection under the ecoclimatic conditions of cultivation specific to each country or region. As many as 27.4% of cultivars studied violated the requirement of the DUS rules for uniformity, being represented by mixtures of two or more closely related genotypes. However, the composition of a cultivar as a set of related but different genotypes may contribute to its adaptivity, and thereby to the known high plasticity of common wheat.展开更多
In this research, 3-day-old etiolated wheat seedlings of Triticum aestivum L. cv. Ceyhan-99 (salt-sensitive) and T. durum Desf. cv. Firat-93 (salt-tolerant) were grown in control and salt (150 mmol/L NaCl) treat...In this research, 3-day-old etiolated wheat seedlings of Triticum aestivum L. cv. Ceyhan-99 (salt-sensitive) and T. durum Desf. cv. Firat-93 (salt-tolerant) were grown in control and salt (150 mmol/L NaCl) treatments at a 15/25℃ temperature regime in the light for 12 days. Soluble proteins extracted from the first leaf tissues of two cultivars were analyzed by twodimensional (2-D) electrophoresis in order to detect NaCl-induced changes. The soluble leaf protein profiles of cultivars were observed to be similar. However, quantitative differences in 74 proteins were detected in the salt treatment group, compared to the control. Among the 74 protein spots, 14 were common for two cultivars. As a result of NaCl treatment, two low-molecular-weight (LMW) proteins (28.9 and 30.0 kDa) and one intermediate-molecular-weight (IMW) protein (44.3 kDa) in cv. Ceyhan-99 and six LMW proteins (18.6, 19.4, 25.7, 25.9, 26 and 27.6 kDa) in cv. Firat-93 were newly synthesized. The newly synthesized proteins were specific to each cultivar. In the Firat-93 cultivar, four proteins with LMW (24.8-27.9 kDa) were completely lost in NaCl treatment. Moreover, these four protein spots were not observed in both protein profiles of cv. Ceyhan-99. Most of these proteins were in acidic character (pl 〈6.0-6.9) and low molecular weight (〈31.6 kDa). It is suggested that the newly synthesized or completely lost LMW proteins may be important for cultivars differing in sensitivity towards NaCl.展开更多
In cereal species such as wheat (</span><i><span style="font-family:Verdana;">Ttiticum aestivum</span></i><span style="font-family:Verdana;">) and barley (</s...In cereal species such as wheat (</span><i><span style="font-family:Verdana;">Ttiticum aestivum</span></i><span style="font-family:Verdana;">) and barley (</span><i><span style="font-family:Verdana;">Hordeum vulg</span><span style="font-family:Verdana;">are</span></i><span><span style="font-family:Verdana;">), many studies have indicated that</span><i><span style="font-family:Verdana;"> VERNALIZATION </span></i><span style="font-family:Verdana;">1</span><i> </i><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">VRN</span></i><span style="font-family:Verdana;">1)</span></span><span style="font-family:Verdana;"> functions as a flowering promoter, which activates florigen gene expression. The wheat florigen gene </span><i><span style="font-family:Verdana;">Wheat FLOWERING LOCUS T</span></i><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">WFT</span></i><span style="font-family:Verdana;">, which is identical to </span><i><span style="font-family:Verdana;">VRN</span></i><span style="font-family:Verdana;">3) is an integrator of the vernalization, photoperiod and au</span><span><span style="font-family:Verdana;">tonomous pathways in wheat flowering, and the </span><i><span style="font-family:Verdana;">WFT</span></i><span style="font-family:Verdana;"> expression is corre</span></span><span style="font-family:Verdana;">lated with the </span><i><span style="font-family:Verdana;">V</span><span style="font-family:Verdana;">RN</span></i><span><span style="font-family:Verdana;">1</span><i> </i><span style="font-family:Verdana;">expression. </span><i><span style="font-family:Verdana;">VRN</span></i><span style="font-family:Verdana;">1</span><i> </i><span style="font-family:Verdana;">encodes an APETALA1/FRUITFULL-lik</span></span><span style="font-family:Verdana;">e MADS-box transcription factor which expression is induced by vernalization, leading to flowering thorough up-regulation of </span><i><span style="font-family:Verdana;">WFT</span></i><span style="font-family:Verdana;">. In </span><i><span style="font-family:Verdana;">Arabidopsis</span></i><span style="font-family:Verdana;">, it has been reported that protein-protein interactions are keys for MADS-box protein function and MADS-box transcription factors must dimerize to bind to the target gene. In this study, by using gel permeation chromatography (GPC) with purified VRN1 protein, we indicated the possibility that VRN1 protein exists as tetramer-like as flowering homeotic MADS-box proteins in </span><i><span style="font-family:Verdana;">Arabidopsis</span></i><span style="font-family:Verdana;">.展开更多
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize...SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.展开更多
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 no...Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat.展开更多
基金financially supported by a grant from Tarbiat Modares University,Tehran,Iran
文摘The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cultivars of wheat (Triticum aestivum L.) exposed to 4℃. Plants were sampled on days 2, 14, 21 and 35 of exposure to 4℃. The final leaf number (FLN) was determined throughout the vernalization periods (0, 7, 14, 24, and 35 d) at 4℃. The final leaf number decreased until days 24 and 35 in Sardari and Norstar eultivars, respectively, indicating the vernalization saturation at these times. No clear changes were detected in the final leaf number of Kohdash cultivar, verifying no vernalization requirement for this spring wheat cultivar. Comparing with control, clear cold-induced 2-fold increases in proteins quantity occurred after 48 h following the 4℃-treatment in the leaves of the both winter wheat cultivars but, such response was not detected in the spring cultivar. However, the electrophoretic protein patterns showed between-cultivar and between-temperature treatment differences. With increasing exposure time to 4℃, the winter cultivars tended to produce more HMW polypeptides than the spring cultivar. Similar proteins were induced in both Sardari and Norstar winter wheat cultivars, however, the long vernalization requirement in Norstar resulted in high level and longer duration of expression of cold-induced proteins compared to Sardari with a short vernalization requirement. These observations indicate that vernalization response regulates the expression of low temperature (LT) tolerance proteins and determines the duration of expression of LT- induced proteins.
基金supported by the National Natural Science Foundation of China (30871578)the Key Project of National Plant Transgenic Genes of China(2008ZX08002004,2011ZX08002004)
文摘Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total proteins were extracted from wheat (Triticum aestivum L.) leaves by a conventional trichloroacetic acid (TCA)/acetone method and a protocol first developed in this work. Phytate/Ca2+ fractionation and TCA/acetone precipitation were combined to design an improved TCA/acetone method. The extracted proteins were analysed by two-dimensional gel electrophoresis (2-DE). The resulting 2-DE images were compared to reveal major differences. The results showed that large quantities of Rubisco were deleted from wheat leaf proteins prepared by the improved method. As many as (758±4) protein spots were detected from 2-DE images of protein extracts obtained by the improved method, 130 more than those detected by the TCA/acetone method. Further analysis indicated that more protein spots could be detected at regions of pI 4.00-4.99 and 6.50-7.00 in the improved method-based 2-DE images. Our findings indicated that the improved method is an efficient protein preparation protocol for separating low-abundance proteins in wheat leaf tissues by 2-DE analysis. The proposed protocol is simple, fast, inexpensive and also applicable to protein preparations of other plants.
文摘Protoplasts derived from common wheat (Triticum aestivum L,. cv. Jinan 177) were fused with UV-treated protoplasts of Agropyron elongatum. (Host) Nevski by PEG method, and fertile asymmetric somatic hybrid plants resembling wheat morphology were obtained. The F-2 hybrid plants could be divided into 3 types according to their morphology. Type I hybrids had high and loosely standing stalks with big spikes and grains. Type ii hybrids were dwarf and compact in shape with high tillering ability and smaller spikes. Type III hybrids were similar to type I as a whole but had more compact and erect spikes. All the F-2 hybrid lines were superior to wheat in seed protein content, although some difference existed between themselves. Protein analysis of immature embryos and flag leaves from hybrids by two-dimensional electrophoresis showed that they possessed characteristic proteins of both parents and some new proteins. There existed also some different kinds of proteins in different lines.
基金supported by the National Natural Science Foundation of China (31201674 and 31371618)the Natural Science Foundation of Hebei Province, China (C2011204031)the Key Laboratory of Crop Growth Regulation of Hebei Province, China
文摘Zinc finger protein(ZFP) genes comprise a large and diverse gene family, and are involved in biotic and abiotic stress responses in plants. In this study, a total of 126 ZFP genes classified into various types in wheat were characterized and subjected to expression pattern analysis under inorganic phosphate(Pi) deprivation. The wheat ZFP genes and their corresponding GenBank numbers were obtained from the information of a 4×44K wheat gene expression microarray chip. They were confirmed by sequence similarity analysis and named based on their homologs in Brachypodium distachyon or Oriza sativa. Expression analysis based on the microarray chip revealed that these ZFP genes are categorized into 11 classes according to their gene expression patterns in a 24-h of Pi deprivation regime. Among them, ten genes were differentially up-regulated, ten genes differentially downregulated, and two genes both differentially up- and down-regulated by Pi deprivation. The differentially up- or down-regulated genes exhibited significantly more or less transcripts at one, two, or all of the checking time points(1, 6, and 24 h) of Pi stress in comparison with those of normal growth, respectively. The both differentially up- and down-regulated genes exhibited contrasting expression patterns, of these, TaWRKY70;5 showed significantly up-regulated at 1 and 6 h and down-regulated at 24 h whereas TaAN1AN20-8;2 displayed significantly upregulated at 1 h and downregulated at 6 h under deprivation Pi condition. Real time PCR analysis confirmed the expression patterns of the differentially expressed genes obtained by the microarray chip. Our results indicate that numerous ZFP genes in wheat respond to Pi deprivation and have provided further insight into the molecular basis that plants respond to Pi deprivation mediated by the ZFP gene family.
基金funded by the National Basic Research Program of China (973 Program of China,2009CB118301)the National 863 Program of China(2006AA100102)
文摘The male-sterile lines with Ms2 gene were highly evaluated in recurrent selection in wheat (Triticum aestivum L.). Three populations C6 (population after six cycles of selection), C7 (population after seven cycles of selection), and C8 (population after eight cycles of selection) were constructed through recurrent selection with 12 parental materials (P). Acid polyacrymide gel electrophoresis (A-PAGE) analysis was used to identify gliadin patterns and evaluate the genetic diversity in 12 parents and three populations. A total of 63 bands were identified, of which 17 polymorphic bands and 7 unique bands were present in populations and seven polymorphic bands and four unique bands were present in parents. The number of polymorphic and unique bands decreased gradually from C6 to C8, especially for to- and y-gliadins. The genetic distances in C6, C7, and C8 were calculated. The distributions of genetic distance were different in three recurrent selection populations. From C6 to C8, the genetic distance was 0.2687, 0.2652 and 0.1987, respectively. Statistically significant differences were detected between C7 and C8 with the T value of 37.9718. The result of cluster analysis based on genetic similarity matrix of three populations fitted well to those of principle coordinates analysis (PCoA). Compared with 12 parents, almost all individuals of three populations are new genotypes. Most of the individuals from C6 and C7 could be divided into two groups, while most individuals of C8 were in one cluster. In conclusion, the results indicated that the genetic diversity was decreased severely according to the information revealed by A-PAGE, although some variations could be created in the recurrent selection. It was necessary to introduce diverse germplasm based on the genetic database of recurrent population to maintain and improve the breeding efficiency in the further program.
基金financially supported by the National Natural Science Foundation of China (31371618,31201674)the National Transgenic Major Program of China (2011ZX08008)the Key Laboratory of Crop Growth Regulation of Hebei Province,China
文摘Mitogen-activated protein kinase (MPK) cascades consist of a set of kinase types (MPKKKs, MPKKs, MPKs) to establish conserved signal-transducing modules mediating plant growth, development as well as responses to internal and external cues. In this study, the expression patterns of six MPKKK, two MPKK, and 11 MPK genes in wheat in responses to external treatments of phytohormones, including naphthylacetic acid (NAA), abscisic acid (ABA), 6-benzyladenine (6-BA), gibber- ellin (GA3), salisylic acid (SA), jasmonic acid (JA), and ethylene (ETH), were investigated. Expression analysis revealed that several of the MPK cascade genes are responses to the external phytohormone signaling. Of which, TaMPKKKA;3 is induced by 6-BA and NAA while TaMPK4 repressed by ETH, GA3, SA, and JA; TaMPKKKA, TaMPKKKA;3 and TaMPK1 are down-regulated by ETH and GA3whereas TaMPK9 and TaMPK12 repressed by ETH and JA in addition that TaMPK12 also repressed by GA3; TaMPK12;1 is down-regulated by ABA, GA3 and SA while TaMPK17 repressed by all exogenous phytonormones examined. TaMPK4, a MPK type gene previously characterized to mediate tolerance to phosphate (Pi) deprivation, was functionally evaluated for its role in mediation of responses of plants to exogenous GA3, ETH, SA, and JA. Results indicated that overexpression and antisense expression of TaMPK4 in tobacco dramatically modify the growth of seedlings upon treatments of GA3, SA and JA, in which the overexpressors behaved deteriorated growth feature whereas the seedlings with antisense expression of TaMPK4 exhibited improved seedling phenotype. The growth behaviors in lines overexpressing or antisensely expressing TaMPK4 are closely associated with the biomass and the corresponding hormone-associated parameters. These results demonstrated that TaMPK4 acts as a critical player in mediating the phyto- hormone signaling. Our findings have identified the phytohormone-responsive MPK cascade genes in wheat and provided a connection between the phytohormone-mediated responses and the MPK cascade pathways.
基金Supported by the National Basic Research Program of China(2009CB118602)Young Backbone Teachers Program of Henan Province(2011)~~
文摘[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 161 Chinese winter wheat cultivars from four regions. [Method] One hundred and sixty-one winter wheat varieties from China Wheat Zones I, II, III and IV (Table 1) were grown in a randomized block de- sign, in the 2009-2011 cropping season; and then the indexes for describing the grain morphological characteristics such as the thousand kernel weight (TKW), kernel length (KL), kernel width (KW) and kernel thickness (KT) were measured; the phytic acid content (PAC), protein content and sedimentation value were also determined; finally, the relationship between PAC and protein content, kernel characteristics were analyzed. [Result] The PAC in the cultivars tested ranged from 0.92% to 1.95% with a mean value of 1.41%. Protein content ranged from 12.60% to 19.20%, with a mean of 15.24%. Most (53.4%) of the wheat genotypes had a PAC value in the range of 1.25% to 1.55%. No significant correlation was found between PAC and protein content, sedimentation value, while protein content and SDS sedimentation value was significant correlated, which suggested the possibility of breeding wheat cultivars that have a low PAC but a high protein content and good gluten quality. There was a high correlation between TKW and KW (,.=0.79), KL (r=0.50) and KT (r=0.64). PAC was found having no significant correlation with TKW, KW, KL and KT. [Conclusion] The result suggests the possibility of breeding wheat cultivars that have a low PAC but high kernel weight.
基金funded by the National “Key Sci-Tech” Project (2016ZX08002-001-004)
文摘Sharp eyespot,mainly caused by the soil-borne fungus Rhizoctonia cerealis,affects wheat(Triticum aestivum L.)production worldwide.In this study,we isolated TaCML36 gene encoding a wheat calmodulin-like protein,and studied its defense role in protection against R.cerealis.Transcription of TaCML36 was significantly elevated by both R.cerealis infection and exogenous ethylene treatment.Transcription was higher in resistant wheat lines than in susceptible ones.There were copies of TaCML36 on chromosomes 5A,5B,and 5D.The TaCML36 protein is composed of 183 amino acids and contains two calcium-binding EFhand domains.Subcellular localization assays in wheat indicated that TaCML36 localizes in both the cytoplasm and nucleus.Virus-induced gene silencing and disease assessment indicated that compared to the controls,TaCML36-silenced wheat plants displayed significantly reduced resistance to R.cerealis and had greater fungal biomass,suggesting that knockdown of TaCML36 impaired host resistance.Knockdown of TaCML36 also significantly repressed expression of pathogenesis-related genes such as Chitinase 1,PDF35,and PR17C,the ethylene response factor-encoding gene TaPIE1,and ethylene biosynthesis gene ACO2.Collectively,our results suggest that TaCML36 positively participates in the innate immune response to R.cerealis infection by modulating expression of defense-associated genes possibly in the ethylene signaling pathway.
基金funded by the Spanish Ministry of Science and Innovation(Project PID2019-110847RB-I00)the European Regional Development Fund(FEDER)。
文摘The gluten proteins of wheat grain are responsible for visco-elastic properties of flour,but they also trigger the immune-response of celiac disease.In this work,two low-gliadin RNA interference(RNAi)wheat lines that differ for the promoter driving the silencing(D-hordein andγ-gliadin promoters for D783 and D793 lines,respectively),were characterized at transcriptomic,and protein fraction levels in the grain.Silencing of gliadins provides a readjustment in the grain protein fractions that also affects to the nongluten proteins(NGP),which were increased in both RNAi lines.Determination of wheat gluten by means of the R5 monoclonal antibody also showed a strong reduction in the content of gluten in both RNAi lines.Moreover,fructans,an oligosaccharide linked with the development of non-celiac wheat sensitivity(NCWS)were also significantly decreased in RNAi lines.The down-regulation of gliadins fractions also impacts to other metabolic processes,particularly on carbohydrate metabolism,enzyme regulator activity and response to stress.Genes and transcription factors regulated by ABA were up-regulated,which could suggest the implication of this phytohormone on the stress response observed in the RNAi lines.
文摘A new, improved version of the catalog of 182 alleles at the six Gli loci of common wheat(T.aestivum L.) shown in electrophoregrams of 128 standard genotypes was used for analysis of1060 cultivars and lines bred in the 20 th century. The most frequent alleles in the studied germplasm occurred with frequencies of 18%–40%, with 30 unique alleles, one in each cultivar. Extremely high genetic diversity was found(average H for the six main Gli loci was0.870 ± 0.046), nearly identical in winter(H = 0.831) and spring(H = 0.856) wheats but differing among 28 groups of cultivars released in 22 countries. Each country or region was characterized by its own specific set of the most frequent Gli alleles, and the 28 cultivar groups formed five main relationship clusters if polymorphism at the six Gli loci was considered. However, different levels of similarity between groups of cultivars were found if polymorphism of the A, B, or D genomes of common wheat was tested separately. In general, the 20 th century germplasm of common wheat was differentiated and structured by country or region and cultivar type(spring or winter). Each elemental genome(in particular, A and D) contributed to the structure of the polymorphism studied. We propose that the structure of the wheat germplasm was a result of natural selection under the ecoclimatic conditions of cultivation specific to each country or region. As many as 27.4% of cultivars studied violated the requirement of the DUS rules for uniformity, being represented by mixtures of two or more closely related genotypes. However, the composition of a cultivar as a set of related but different genotypes may contribute to its adaptivity, and thereby to the known high plasticity of common wheat.
文摘In this research, 3-day-old etiolated wheat seedlings of Triticum aestivum L. cv. Ceyhan-99 (salt-sensitive) and T. durum Desf. cv. Firat-93 (salt-tolerant) were grown in control and salt (150 mmol/L NaCl) treatments at a 15/25℃ temperature regime in the light for 12 days. Soluble proteins extracted from the first leaf tissues of two cultivars were analyzed by twodimensional (2-D) electrophoresis in order to detect NaCl-induced changes. The soluble leaf protein profiles of cultivars were observed to be similar. However, quantitative differences in 74 proteins were detected in the salt treatment group, compared to the control. Among the 74 protein spots, 14 were common for two cultivars. As a result of NaCl treatment, two low-molecular-weight (LMW) proteins (28.9 and 30.0 kDa) and one intermediate-molecular-weight (IMW) protein (44.3 kDa) in cv. Ceyhan-99 and six LMW proteins (18.6, 19.4, 25.7, 25.9, 26 and 27.6 kDa) in cv. Firat-93 were newly synthesized. The newly synthesized proteins were specific to each cultivar. In the Firat-93 cultivar, four proteins with LMW (24.8-27.9 kDa) were completely lost in NaCl treatment. Moreover, these four protein spots were not observed in both protein profiles of cv. Ceyhan-99. Most of these proteins were in acidic character (pl 〈6.0-6.9) and low molecular weight (〈31.6 kDa). It is suggested that the newly synthesized or completely lost LMW proteins may be important for cultivars differing in sensitivity towards NaCl.
文摘In cereal species such as wheat (</span><i><span style="font-family:Verdana;">Ttiticum aestivum</span></i><span style="font-family:Verdana;">) and barley (</span><i><span style="font-family:Verdana;">Hordeum vulg</span><span style="font-family:Verdana;">are</span></i><span><span style="font-family:Verdana;">), many studies have indicated that</span><i><span style="font-family:Verdana;"> VERNALIZATION </span></i><span style="font-family:Verdana;">1</span><i> </i><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">VRN</span></i><span style="font-family:Verdana;">1)</span></span><span style="font-family:Verdana;"> functions as a flowering promoter, which activates florigen gene expression. The wheat florigen gene </span><i><span style="font-family:Verdana;">Wheat FLOWERING LOCUS T</span></i><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">WFT</span></i><span style="font-family:Verdana;">, which is identical to </span><i><span style="font-family:Verdana;">VRN</span></i><span style="font-family:Verdana;">3) is an integrator of the vernalization, photoperiod and au</span><span><span style="font-family:Verdana;">tonomous pathways in wheat flowering, and the </span><i><span style="font-family:Verdana;">WFT</span></i><span style="font-family:Verdana;"> expression is corre</span></span><span style="font-family:Verdana;">lated with the </span><i><span style="font-family:Verdana;">V</span><span style="font-family:Verdana;">RN</span></i><span><span style="font-family:Verdana;">1</span><i> </i><span style="font-family:Verdana;">expression. </span><i><span style="font-family:Verdana;">VRN</span></i><span style="font-family:Verdana;">1</span><i> </i><span style="font-family:Verdana;">encodes an APETALA1/FRUITFULL-lik</span></span><span style="font-family:Verdana;">e MADS-box transcription factor which expression is induced by vernalization, leading to flowering thorough up-regulation of </span><i><span style="font-family:Verdana;">WFT</span></i><span style="font-family:Verdana;">. In </span><i><span style="font-family:Verdana;">Arabidopsis</span></i><span style="font-family:Verdana;">, it has been reported that protein-protein interactions are keys for MADS-box protein function and MADS-box transcription factors must dimerize to bind to the target gene. In this study, by using gel permeation chromatography (GPC) with purified VRN1 protein, we indicated the possibility that VRN1 protein exists as tetramer-like as flowering homeotic MADS-box proteins in </span><i><span style="font-family:Verdana;">Arabidopsis</span></i><span style="font-family:Verdana;">.
基金supported by National Key Research and Development Program of China(2022YFD1200202)State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-7)Graduate Student Innovation Ability Training Funding Project of Hebei Province(CXZZBS2023073)。
文摘SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.
基金supported by the National High-tech R&D Program (2011AA100501)the National Basic Research Program of China (2010CB951501)
文摘Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat.