A method based on cloud point extraction was developed to determine phthalate esters including di-ethyl-phthalate (DEP), di- (2-ethylhexyl)-phthalate (DEHP) and di-cyclohexyl-phthalate (DCP) in environmental w...A method based on cloud point extraction was developed to determine phthalate esters including di-ethyl-phthalate (DEP), di- (2-ethylhexyl)-phthalate (DEHP) and di-cyclohexyl-phthalate (DCP) in environmental water samples using high-performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extraction solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na2SO4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, the method can achieve preconcentration factors of 35, 88, 111 and detection of limits of 2.0, 3.8, 1.0 ng/ml for DEP, DEHP and DCP in 10-ml water sample, respectively. The proposed method was successfully applied to the determination of trace amount of phathalate esters in effluent water of the wastewater treatment plant and the lixivium of plastic fragments.展开更多
Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame ato...Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame atomic absorption spectrometry (FAAS) using Triton X-114 as surfactant. The main factors affecting the CPE, such as concentration of Triton X-114 and DPTH, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimum conditions i.e., pH 5.4, [DPTH] = 6x10-3%, [Triton X-114] = 0.25% (v/v), an enhancement factor of 10.5 fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.95 μg L?1. The precision for 8 replicate deter- minations at 20 and 100 μgL?1 Cd were 2.4 % and 2 % relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0,998 at levels close to the detection limit up to at least 200 μgL?1. The method was successfully applied to the determination of cadmium in water, environmental and food samples and in a BCR-176 standard reference material.展开更多
A new method was developed for the determination of sodium copper chlorophyll(SCC) by cloud point extraction preconcentration and spectrophotometry, for which Triton X-114 was selected as a nonionic surfactant. Severa...A new method was developed for the determination of sodium copper chlorophyll(SCC) by cloud point extraction preconcentration and spectrophotometry, for which Triton X-114 was selected as a nonionic surfactant. Several factors affecting the extraction efficiency of SCC and its subsequent determination, including the p H of the sample solution, salt and surfactant concentrations, and equilibration temperature and time, were studied and optimized. The extraction efficiency approached 99.4%.The calibration graph under the optimum conditions was linear in the concentration range of 3–220 mg/L with correlation coefficients> 0.9997(n = 8). The limit of detection for the analytes was 0.6 mg/L(S/N = 3). The proposed method is inexpensive, simple, and accurate for the extraction and determination of SCC in food samples.展开更多
Ice structuring proteins(ISPs)isolated from the cold-acclimated plants have a great potential in improving the quality of frozen foods.The purification of ISP complexes from winter wheat was achieved using an aqueous ...Ice structuring proteins(ISPs)isolated from the cold-acclimated plants have a great potential in improving the quality of frozen foods.The purification of ISP complexes from winter wheat was achieved using an aqueous two-phase system of Triton X-114.The highly reactive phenols were removed,and the ISP complexes remained in the aqueous phase after phase separation.The ISP complexes treated by this procedure retained higher thermal hysteresis activity than those treated by ammonium sulfate method.The phase separation technique provides a simple and mild way for removing phenols from ISP complexes.展开更多
基金Projected supported by the National Basic Research Program (973)of China (No. 2003CB415001)the Pilot Program of KnowledgeInnovation Program of Chinese Academy of Sciences (No. KZCX3-SW-431).
文摘A method based on cloud point extraction was developed to determine phthalate esters including di-ethyl-phthalate (DEP), di- (2-ethylhexyl)-phthalate (DEHP) and di-cyclohexyl-phthalate (DCP) in environmental water samples using high-performance liquid chromatography separation and ultraviolet detection (HPLC-UV). The non-ionic surfactant Triton X-114 was chosen as extraction solvent. The parameters affecting extraction efficiency, such as concentrations of Triton X-114 and Na2SO4, equilibration temperature, equilibration time and centrifugation time were evaluated and optimized. Under the optimum conditions, the method can achieve preconcentration factors of 35, 88, 111 and detection of limits of 2.0, 3.8, 1.0 ng/ml for DEP, DEHP and DCP in 10-ml water sample, respectively. The proposed method was successfully applied to the determination of trace amount of phathalate esters in effluent water of the wastewater treatment plant and the lixivium of plastic fragments.
文摘Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame atomic absorption spectrometry (FAAS) using Triton X-114 as surfactant. The main factors affecting the CPE, such as concentration of Triton X-114 and DPTH, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimum conditions i.e., pH 5.4, [DPTH] = 6x10-3%, [Triton X-114] = 0.25% (v/v), an enhancement factor of 10.5 fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.95 μg L?1. The precision for 8 replicate deter- minations at 20 and 100 μgL?1 Cd were 2.4 % and 2 % relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0,998 at levels close to the detection limit up to at least 200 μgL?1. The method was successfully applied to the determination of cadmium in water, environmental and food samples and in a BCR-176 standard reference material.
文摘A new method was developed for the determination of sodium copper chlorophyll(SCC) by cloud point extraction preconcentration and spectrophotometry, for which Triton X-114 was selected as a nonionic surfactant. Several factors affecting the extraction efficiency of SCC and its subsequent determination, including the p H of the sample solution, salt and surfactant concentrations, and equilibration temperature and time, were studied and optimized. The extraction efficiency approached 99.4%.The calibration graph under the optimum conditions was linear in the concentration range of 3–220 mg/L with correlation coefficients> 0.9997(n = 8). The limit of detection for the analytes was 0.6 mg/L(S/N = 3). The proposed method is inexpensive, simple, and accurate for the extraction and determination of SCC in food samples.
基金supported by the Natural Science Foundation of Jiangnan University(2008LYY 024).
文摘Ice structuring proteins(ISPs)isolated from the cold-acclimated plants have a great potential in improving the quality of frozen foods.The purification of ISP complexes from winter wheat was achieved using an aqueous two-phase system of Triton X-114.The highly reactive phenols were removed,and the ISP complexes remained in the aqueous phase after phase separation.The ISP complexes treated by this procedure retained higher thermal hysteresis activity than those treated by ammonium sulfate method.The phase separation technique provides a simple and mild way for removing phenols from ISP complexes.