The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China,...The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.展开更多
Background:No studies have documented long-term trends in aboveground biomass(AGB)for mixed-dipterocarp forests(MDF),the dominant rain forest type in tropical wet equatorial Asia.In our study,we sought to document suc...Background:No studies have documented long-term trends in aboveground biomass(AGB)for mixed-dipterocarp forests(MDF),the dominant rain forest type in tropical wet equatorial Asia.In our study,we sought to document such trends over forty years across three sites representing lowland to lower montane elevations.Methods:To do this,we established fifty 100 m×25 m plots in 1978 across three sites sampled along an elevation gradient,identified as mature old-growth forest.We measured trees for diameter at breast height that we identified to species and tagged.We took wood samples to calculate species wood-specific gravity.We re-measured plots in 1998 and again in 2018.Results:We show standing AGB for all sites combined to be 517.52 Mg·ha^(-1)in 1978,but this declined by 17%over 40 years to 430.11 Mg·ha^(-1).No differences exist among sites in AGB primarily because of considerable within site variation;but interactions of time with site show declines across sites were not uniform,one remained about the same.Relatively few species represented a high proportion of the AGB with the top five species comprising between 34%and 65%,depending upon site and year sampled.One species,Mesua nagassarium,represented a disproportionately large amount of AGB and decline over time,particularly at the low elevation site.Conclusions:Our results are directly relevant to estimating AGB and standing carbon sequestered in MDF.Our study is the first to demonstrate varying but overall,declining trends in amounts of AGB among forests making predictions of biomass and standing carbon in MDF difficult over wide regions.展开更多
Amongst the impacts of converting forest to agricultural activities are soil erosion and degradation of ecology service values and goods (ESVG). The soil erosion can be seen as on-site impacts, such as the problems ...Amongst the impacts of converting forest to agricultural activities are soil erosion and degradation of ecology service values and goods (ESVG). The soil erosion can be seen as on-site impacts, such as the problems of decreasing soil fertility and also its off-site impact such as the problems of sedimentation of the nearby rivers, whilst the degradation of ESVG are more holistie in nature, These impacts can be devastating in environmental, biological, and socio-economic manners. This paper reports the study undertaken on the impacts of agricultural development in 0.8 million ha of forest dominated landscape in Pasoh Forest Region (PFR), Malaysia, within period of 8 years from 1995 to 2003. Three folds of impacts on agricultural development examined and analysed, are: (i) relationship of total soil loss and changes in land use pattern, (ii) mapping trends of ESVG for PFR in 1995 and 2003, and (iii) risk assessment of ESVG based on simulation of converting 339,630 ha of primary forest into mass-scale oil palm plantation. Results of this study indicated that although only minor changes of about 1464 ha (about 0.2% of PFR) of primary forest was converted to agricultural activities, it have significantly increased the total soil loss from 59 to 69 million ton/ha/yr. The mean rate of soil is loss for PFR is 0.8 mil ton/ha/yr and if translated into ESVG term, the soil loss costs about US$ 4.8mil/yr. However, majority of the soil loss within all land use classes are within range of very low-low risk categories (〈10 ton/ha/yr). ESVG for PFR were costing US$ 179 millions in 1995, declined to US$114 millions in 2003 due to 0.2% reduction of forested land. The ESVG of converting 339,630 ha primary forest into mass plantation cost less than original forest within period of 20 years examined; the 20th year of conversion, the ESVG of plantation and to-remain as forest cost US$ 963 and US$ 575 millions, respectively. However, this difference is only marginal when full attributes of ESVG are considered.展开更多
The effect of arbuscular mycorrhizal fungi on seedling growth across the rain forest-pasture edge has not received much attention. In a tropical rain forest in eastern Mexico, the seedlings of light demanding (Ficus i...The effect of arbuscular mycorrhizal fungi on seedling growth across the rain forest-pasture edge has not received much attention. In a tropical rain forest in eastern Mexico, the seedlings of light demanding (Ficus insipida), nonsecondary light demanding (Lonchocarpus cruentus) and shade tolerant species (Nectandra ambigens, Coccoloba hondurensis) were grown and transplanted to a forest edge with three inoculation treatments (AM fungus spores and colonized roots, spores, and no inoculum). For all species, stem height, stem diameter, total dry weight, leaf area and net assimilation rate were higher in the pasture. Stem height, stem diameter and root/shoot were higher for L. cruentus, and leaf area ratio, specific leaf area and net assimilation rate were higher for F. insipida;the lowest values of almost all variables were recorded for N. ambigens. L. cruentus and C. hondurensis with mycorrhizae had the highest values for root/shoot and net assimilation rate, respectively. The lowest values of root/shoot and net assimilation rate were observed for nonlight-demanding species in the forest. There were clear trade-offs for the pioneer species between survival and growth, and in underground biomass allocation and assimilation for nonsecondary light demanding, but there was not for the shade-tolerant species.展开更多
In order to finish the cataloging work of buttercup species in the family of Renunculaceae for the compilation of the Flora Yunnanensis, I went to the CAS Institute of Botany in Kunming City,capital of Yunnan Province...In order to finish the cataloging work of buttercup species in the family of Renunculaceae for the compilation of the Flora Yunnanensis, I went to the CAS Institute of Botany in Kunming City,capital of Yunnan Province in May 1995 to look up phyto-taxonomic specimens. At the invitation of the Institute’s director Prof. Xu Zhaifu, when the work was coming to an end, I toured the well-known botanic garden of the Institute in the township of Menglu, which nests in the picturesque district of Xishuang Banna at the southernmost tip of the subtropical territory of Yunnan. In the winter of 1958,I had visited the ever-verdant vicinity to collect floral materials. After almost 37 years, I revisited the botanic garden founded by celebrated展开更多
This paper presents the pattern and changes of fragmented forest in relation with changes of total forest cover in the state of Selangor in three decades. In this study, inventoried forest cover maps of Selangor in 19...This paper presents the pattern and changes of fragmented forest in relation with changes of total forest cover in the state of Selangor in three decades. In this study, inventoried forest cover maps of Selangor in 1971/1972, 1981/1982 and 1991/1992 produced by the Forestry Department of Peninsular Malaysia were digitized to examine the changes in area and number of fragmented forest. Results showed that in 1971/1972, 16 fragmented forests were identified in Selangor. All fragmented forests were identified as dipterocarp forest. A decade later the number of fragmented forests increased by approximately 44% (23). Of the 23 fragmented forests, two were peat swamp forests whereas the remaining were dipterocarp forests. In 1991/1992 the number of fragmented forests (12) was reduced by 47.8%. Two of the fragmented forests were identified as peat swamp forest, seven dipterocarp forest and the other three was mixed of dipterocarp forests and plantation forests. Fragmentation of both dipterocarp and peat swamp forests occurred profoundly during the period between 1971/1972 and 1981/1982, which consequently increased the number of fragmented forests compared with before the period of 1971/1972 where fragmentation happened only at dipterocarp forests. However, many fragmented forests vanished between the 1981/1982 and 1991/1992 periods.展开更多
In the hydrological watershed, some natural processes take place in which the interaction of water, soil, climate and vegetation favors the capture of water. The present study aimed to evaluate preliminary information...In the hydrological watershed, some natural processes take place in which the interaction of water, soil, climate and vegetation favors the capture of water. The present study aimed to evaluate preliminary information regarding the hydrological response and the water balance in a small research watershed with tropical forest cover (15°01'44''N and 92°13'55''W, 471 m, 2.3 has). Events of precipitation, direct runoff, infiltration rate and baseflow were performed. The amount, duration and intensity of rainfall events were recorded with the use of a pluviograph. Surface runoff was quantified with an established gauging station, an H-type gauging device and a horizontal mechanical gauging limnograph. Runoff base flow was measured at the gauging station using the volume-time method. Infiltration was measured using a triple ring infiltrometer, taking two measurements in the upper part and two in the lower part of the microbasin. Evapotranspiration was measured with the amount of rainfall entering and runoff leaving the watershed. In the study period, annual rainfall of 4417.6 mm distributed over 181 events were recorded;about 70% of the storms showed lower intensities at 20 mm·h<sup>-1</sup>. The total runoff was 345.8 mm caused by half of the rainfall events, which represents 7.8% of the total rain;77% of runoff events showed lower sheets of 5 mm and an average specific rate of 20.7 L·s<sup>-1</sup>·ha<sup>-1</sup> with a maximum of 113.6 L·s<sup>-1</sup>·ha<sup>-1</sup>. Three runoff events were greater than 20.1 mm and caused the 22.5% of the total runoff depth in the study period showing the equilibrium conditions in the hydrological response of the forest. Water outputs like baseflow was 669.5 mm. In this way, 90% of the rainfall is infiltrated every year in the micro-watershed, which shows the importance of the plant cover in the hydrological regulation and the groundwater recharge.展开更多
Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and...Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper limestone slopes. It is similar to the tropical montane evergreen broad-leaved forest in the region in physiognomy, but differs from the latter in floristic composition. It is a vegetation type on limestone at high elevations. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between a tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad-leaved forest is the main montane vegetation type in the region. It is dominated largely by the families Fagaceae, Euphorbiaceae, Theaceae and Lauraceae. It differs from tropical lower montane rain forests in its lack of epiphytes and in having more abundant lianas and plants with compound leaves. It is considered to be a distinct vegetation type from the northern margin of mainland southeastern Asia, controlled by a strong seasonal climate, based on its floristic and physiognomic characteristics.展开更多
Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to ru...Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to rubber plantations in SE Asia is increasingly common, and there is a need to understand the impacts of this land-use change on soil respiration in order to revise CO_2 budget calculations. This study focused on the spatial variability of soil respiration along a slope in a natural tropical rainforest and a terraced rubber plantation in Xishuangbanna, Southwest(SW) China. In each land-use type, we inserted 105 collars for soil respiration measurements.Research was conducted over one year in Xishuangbanna during May, June, July and October 2015(wet season) and January and March 2016(dry season). The mean annual soil respiration rate was 30% higher in natural forest than in rubber plantation and mean fluxes in the wet and dry season were 15.1 and 9.5 Mg C ha^(-1) yr^(-1) in natural forest and 11.7 and 5.7 Mg C ha^(-1) yr^(-1) in rubber plantation. Using a linear mixedeffects model to assess the effect of changes in soil temperature and moisture on soil respiration, we found that soil temperature was the main driver of variation in soil respiration, explaining 48% of its seasonal variation in rubber plantation and 30% in natural forest. After including soil moisture, the model explained 70% of the variation in soil respiration in natural forest and 76% in rubber plantation. In the natural forest slope position had a significant effect on soil respiration, and soil temperature and soil moisture gradients only partly explained this correlation. In contrast, soil respiration in rubber plantation was not affected by slope position, which may be due to the terrace structure that resulted in more homogeneous environmental conditions along the slope. Further research is needed to determine whether or not these findings hold true at a landscape level.展开更多
Establishment of Tabebuia cassinoides seedlings is related to water-level fluctuations in southeastern Brazil swamp forests. Nine years of annual monitoring of 48 individuals established during a drought in November 1...Establishment of Tabebuia cassinoides seedlings is related to water-level fluctuations in southeastern Brazil swamp forests. Nine years of annual monitoring of 48 individuals established during a drought in November 1997, when the swamp was unflooded, suggested that their establishment depends on this unpredictable event. This conclusion is further sustained by the wide variability of the seedling cohort size structure, and the fascicular root conformation that holds the shoots erect.展开更多
文摘The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.
基金the National Science Foundation of Sri Lanka(RG/2016/EB/02)Uva Wellassa University(UWU/RG/2016/10)。
文摘Background:No studies have documented long-term trends in aboveground biomass(AGB)for mixed-dipterocarp forests(MDF),the dominant rain forest type in tropical wet equatorial Asia.In our study,we sought to document such trends over forty years across three sites representing lowland to lower montane elevations.Methods:To do this,we established fifty 100 m×25 m plots in 1978 across three sites sampled along an elevation gradient,identified as mature old-growth forest.We measured trees for diameter at breast height that we identified to species and tagged.We took wood samples to calculate species wood-specific gravity.We re-measured plots in 1998 and again in 2018.Results:We show standing AGB for all sites combined to be 517.52 Mg·ha^(-1)in 1978,but this declined by 17%over 40 years to 430.11 Mg·ha^(-1).No differences exist among sites in AGB primarily because of considerable within site variation;but interactions of time with site show declines across sites were not uniform,one remained about the same.Relatively few species represented a high proportion of the AGB with the top five species comprising between 34%and 65%,depending upon site and year sampled.One species,Mesua nagassarium,represented a disproportionately large amount of AGB and decline over time,particularly at the low elevation site.Conclusions:Our results are directly relevant to estimating AGB and standing carbon sequestered in MDF.Our study is the first to demonstrate varying but overall,declining trends in amounts of AGB among forests making predictions of biomass and standing carbon in MDF difficult over wide regions.
文摘Amongst the impacts of converting forest to agricultural activities are soil erosion and degradation of ecology service values and goods (ESVG). The soil erosion can be seen as on-site impacts, such as the problems of decreasing soil fertility and also its off-site impact such as the problems of sedimentation of the nearby rivers, whilst the degradation of ESVG are more holistie in nature, These impacts can be devastating in environmental, biological, and socio-economic manners. This paper reports the study undertaken on the impacts of agricultural development in 0.8 million ha of forest dominated landscape in Pasoh Forest Region (PFR), Malaysia, within period of 8 years from 1995 to 2003. Three folds of impacts on agricultural development examined and analysed, are: (i) relationship of total soil loss and changes in land use pattern, (ii) mapping trends of ESVG for PFR in 1995 and 2003, and (iii) risk assessment of ESVG based on simulation of converting 339,630 ha of primary forest into mass-scale oil palm plantation. Results of this study indicated that although only minor changes of about 1464 ha (about 0.2% of PFR) of primary forest was converted to agricultural activities, it have significantly increased the total soil loss from 59 to 69 million ton/ha/yr. The mean rate of soil is loss for PFR is 0.8 mil ton/ha/yr and if translated into ESVG term, the soil loss costs about US$ 4.8mil/yr. However, majority of the soil loss within all land use classes are within range of very low-low risk categories (〈10 ton/ha/yr). ESVG for PFR were costing US$ 179 millions in 1995, declined to US$114 millions in 2003 due to 0.2% reduction of forested land. The ESVG of converting 339,630 ha primary forest into mass plantation cost less than original forest within period of 20 years examined; the 20th year of conversion, the ESVG of plantation and to-remain as forest cost US$ 963 and US$ 575 millions, respectively. However, this difference is only marginal when full attributes of ESVG are considered.
基金the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT)of the Universidad Nacional Autónoma de México(UNAM Grant IN-235402)the Secretaría de Medio Ambiente y Recursos Naturales-Consejo Nacional de Ciencia y Tecnología(Grant 2002-c01-668),and the Packard Foundation.
文摘The effect of arbuscular mycorrhizal fungi on seedling growth across the rain forest-pasture edge has not received much attention. In a tropical rain forest in eastern Mexico, the seedlings of light demanding (Ficus insipida), nonsecondary light demanding (Lonchocarpus cruentus) and shade tolerant species (Nectandra ambigens, Coccoloba hondurensis) were grown and transplanted to a forest edge with three inoculation treatments (AM fungus spores and colonized roots, spores, and no inoculum). For all species, stem height, stem diameter, total dry weight, leaf area and net assimilation rate were higher in the pasture. Stem height, stem diameter and root/shoot were higher for L. cruentus, and leaf area ratio, specific leaf area and net assimilation rate were higher for F. insipida;the lowest values of almost all variables were recorded for N. ambigens. L. cruentus and C. hondurensis with mycorrhizae had the highest values for root/shoot and net assimilation rate, respectively. The lowest values of root/shoot and net assimilation rate were observed for nonlight-demanding species in the forest. There were clear trade-offs for the pioneer species between survival and growth, and in underground biomass allocation and assimilation for nonsecondary light demanding, but there was not for the shade-tolerant species.
文摘In order to finish the cataloging work of buttercup species in the family of Renunculaceae for the compilation of the Flora Yunnanensis, I went to the CAS Institute of Botany in Kunming City,capital of Yunnan Province in May 1995 to look up phyto-taxonomic specimens. At the invitation of the Institute’s director Prof. Xu Zhaifu, when the work was coming to an end, I toured the well-known botanic garden of the Institute in the township of Menglu, which nests in the picturesque district of Xishuang Banna at the southernmost tip of the subtropical territory of Yunnan. In the winter of 1958,I had visited the ever-verdant vicinity to collect floral materials. After almost 37 years, I revisited the botanic garden founded by celebrated
文摘This paper presents the pattern and changes of fragmented forest in relation with changes of total forest cover in the state of Selangor in three decades. In this study, inventoried forest cover maps of Selangor in 1971/1972, 1981/1982 and 1991/1992 produced by the Forestry Department of Peninsular Malaysia were digitized to examine the changes in area and number of fragmented forest. Results showed that in 1971/1972, 16 fragmented forests were identified in Selangor. All fragmented forests were identified as dipterocarp forest. A decade later the number of fragmented forests increased by approximately 44% (23). Of the 23 fragmented forests, two were peat swamp forests whereas the remaining were dipterocarp forests. In 1991/1992 the number of fragmented forests (12) was reduced by 47.8%. Two of the fragmented forests were identified as peat swamp forest, seven dipterocarp forest and the other three was mixed of dipterocarp forests and plantation forests. Fragmentation of both dipterocarp and peat swamp forests occurred profoundly during the period between 1971/1972 and 1981/1982, which consequently increased the number of fragmented forests compared with before the period of 1971/1972 where fragmentation happened only at dipterocarp forests. However, many fragmented forests vanished between the 1981/1982 and 1991/1992 periods.
文摘In the hydrological watershed, some natural processes take place in which the interaction of water, soil, climate and vegetation favors the capture of water. The present study aimed to evaluate preliminary information regarding the hydrological response and the water balance in a small research watershed with tropical forest cover (15°01'44''N and 92°13'55''W, 471 m, 2.3 has). Events of precipitation, direct runoff, infiltration rate and baseflow were performed. The amount, duration and intensity of rainfall events were recorded with the use of a pluviograph. Surface runoff was quantified with an established gauging station, an H-type gauging device and a horizontal mechanical gauging limnograph. Runoff base flow was measured at the gauging station using the volume-time method. Infiltration was measured using a triple ring infiltrometer, taking two measurements in the upper part and two in the lower part of the microbasin. Evapotranspiration was measured with the amount of rainfall entering and runoff leaving the watershed. In the study period, annual rainfall of 4417.6 mm distributed over 181 events were recorded;about 70% of the storms showed lower intensities at 20 mm·h<sup>-1</sup>. The total runoff was 345.8 mm caused by half of the rainfall events, which represents 7.8% of the total rain;77% of runoff events showed lower sheets of 5 mm and an average specific rate of 20.7 L·s<sup>-1</sup>·ha<sup>-1</sup> with a maximum of 113.6 L·s<sup>-1</sup>·ha<sup>-1</sup>. Three runoff events were greater than 20.1 mm and caused the 22.5% of the total runoff depth in the study period showing the equilibrium conditions in the hydrological response of the forest. Water outputs like baseflow was 669.5 mm. In this way, 90% of the rainfall is infiltrated every year in the micro-watershed, which shows the importance of the plant cover in the hydrological regulation and the groundwater recharge.
文摘Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper limestone slopes. It is similar to the tropical montane evergreen broad-leaved forest in the region in physiognomy, but differs from the latter in floristic composition. It is a vegetation type on limestone at high elevations. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between a tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad-leaved forest is the main montane vegetation type in the region. It is dominated largely by the families Fagaceae, Euphorbiaceae, Theaceae and Lauraceae. It differs from tropical lower montane rain forests in its lack of epiphytes and in having more abundant lianas and plants with compound leaves. It is considered to be a distinct vegetation type from the northern margin of mainland southeastern Asia, controlled by a strong seasonal climate, based on its floristic and physiognomic characteristics.
基金the BMZ/GIZ “Green Rubber” (Project No. Project No. 13.1432.7-001.00)the CGIAR (Consultative Group for International Agricultural Research) Research Program 6: Forests, Trees and Agroforestry+2 种基金financially supported by the Federal Ministry for Economic Cooperation and Development, Germanyfunded by the National Natural Science Foundation of China (Grant No. 31450110067) the Chinese Academy of Science funded the Chinese Academy of Science funded the post-doc fellowship for Stefanie Goldberg (Grant No. 2013Y2SB0007)
文摘Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO_2 levels. The conversion of tropical forests to rubber plantations in SE Asia is increasingly common, and there is a need to understand the impacts of this land-use change on soil respiration in order to revise CO_2 budget calculations. This study focused on the spatial variability of soil respiration along a slope in a natural tropical rainforest and a terraced rubber plantation in Xishuangbanna, Southwest(SW) China. In each land-use type, we inserted 105 collars for soil respiration measurements.Research was conducted over one year in Xishuangbanna during May, June, July and October 2015(wet season) and January and March 2016(dry season). The mean annual soil respiration rate was 30% higher in natural forest than in rubber plantation and mean fluxes in the wet and dry season were 15.1 and 9.5 Mg C ha^(-1) yr^(-1) in natural forest and 11.7 and 5.7 Mg C ha^(-1) yr^(-1) in rubber plantation. Using a linear mixedeffects model to assess the effect of changes in soil temperature and moisture on soil respiration, we found that soil temperature was the main driver of variation in soil respiration, explaining 48% of its seasonal variation in rubber plantation and 30% in natural forest. After including soil moisture, the model explained 70% of the variation in soil respiration in natural forest and 76% in rubber plantation. In the natural forest slope position had a significant effect on soil respiration, and soil temperature and soil moisture gradients only partly explained this correlation. In contrast, soil respiration in rubber plantation was not affected by slope position, which may be due to the terrace structure that resulted in more homogeneous environmental conditions along the slope. Further research is needed to determine whether or not these findings hold true at a landscape level.
文摘Establishment of Tabebuia cassinoides seedlings is related to water-level fluctuations in southeastern Brazil swamp forests. Nine years of annual monitoring of 48 individuals established during a drought in November 1997, when the swamp was unflooded, suggested that their establishment depends on this unpredictable event. This conclusion is further sustained by the wide variability of the seedling cohort size structure, and the fascicular root conformation that holds the shoots erect.