Observational data of mesoscale surface weather stations and weather radars of Guangdong province are employed to analyze the asymmetric distribution of convection prior to, during and after landfall for tropical cycl...Observational data of mesoscale surface weather stations and weather radars of Guangdong province are employed to analyze the asymmetric distribution of convection prior to, during and after landfall for tropical cyclones of Chanchu and Prapiroon making landfall on the south China coast in 2006. The results showed that strong convection is located in the eastern and northern sectors of the landfalling Chanchu and Prapiroon, namely in the front and right portions of the TC tracks, for a period of time starting from 12 h prior to landfall to 6 h after it. Their convection also had distinct differences in the vertical direction. The analysis indicated that although the landfall of Chanchu and Prapiroon has the same asymmetric distribution of convection, the causes are not exactly the same. The asymmetric distribution of convection in the case of Chanchu is mainly correlated with the impacts of a strong environmental vertical wind shear, low-level horizontal wind shear, and low-level convergence and divergence. In the case of Prapiroon, however, the asymmetric distribution of convection is mainly associated with the impacts of low-level convergence and divergence.展开更多
基金National Basic Research Program of China (973 program) (2009CB421500)National Natural Science Foundation of China (90715031+3 种基金 40875026 and 40730948)Project of City University of Hong Kong (7001994)Natural Science Foundation of Guangdong Province of China (8351030101000002)
文摘Observational data of mesoscale surface weather stations and weather radars of Guangdong province are employed to analyze the asymmetric distribution of convection prior to, during and after landfall for tropical cyclones of Chanchu and Prapiroon making landfall on the south China coast in 2006. The results showed that strong convection is located in the eastern and northern sectors of the landfalling Chanchu and Prapiroon, namely in the front and right portions of the TC tracks, for a period of time starting from 12 h prior to landfall to 6 h after it. Their convection also had distinct differences in the vertical direction. The analysis indicated that although the landfall of Chanchu and Prapiroon has the same asymmetric distribution of convection, the causes are not exactly the same. The asymmetric distribution of convection in the case of Chanchu is mainly correlated with the impacts of a strong environmental vertical wind shear, low-level horizontal wind shear, and low-level convergence and divergence. In the case of Prapiroon, however, the asymmetric distribution of convection is mainly associated with the impacts of low-level convergence and divergence.