期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
The Role of β-effect and a Uniform Current on Tropical Cyclone Intensity 被引量:9
1
作者 端义宏 伍荣生 +2 位作者 余晖 梁旭东 陈仲良 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期75-86,共12页
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment comp... A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification. 展开更多
关键词 β-effect uniform current asymmetric structure tropical cyclone intensity change
下载PDF
Impact of warm mesoscale eddy on tropical cyclone intensity 被引量:5
2
作者 Jia Sun Guihua Wang +8 位作者 Xuejun Xiong Zhenli Hui Xiaomin Hu Zheng Ling Long Yu Guangbing Yang Yanliang Guo Xia Ju Liang Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第8期1-13,共13页
The spatial-temporal patterns of tropical cyclone(TC) intensity changes caused by the warm ocean mesoscale eddy(WOME) distribution are evaluated using two sets of idealized numerical experiments. The results show that... The spatial-temporal patterns of tropical cyclone(TC) intensity changes caused by the warm ocean mesoscale eddy(WOME) distribution are evaluated using two sets of idealized numerical experiments. The results show that the TC was intensified and weakened when a WOME was close to and far away from the TC center, respectively.The area where the WOME enhanced(weakened) TC intensity is called the inner(outer) area in this study.Amplitudes of the enhancement and weakening caused by the WOME in the inner and outer area decreased and increased over time, while the ranges of the inner and outer area diminished and expanded, respectively. The WOME in the inner area strengthened the secondary circulation of the TC, increased heat fluxes, strengthened the symmetry, and weakened the outer spiral rainband, which enhanced TC intensity. The effect was opposite if the WOME was in the outer area, and it weakened the TC intensity. The idealized simulation employed a stationary TC, and thus the results may only be applied to TCs with slow propagation. These findings can improve our understanding of the interactions between TC and the WOME and are helpful for improving TC intensity forecasting by considering the effect of the WOME in the outer areas. 展开更多
关键词 tropical cyclone intensity warm ocean mesoscale eddy upper ocean spatial-temporal pattern
下载PDF
STUDY ON THE MULTIVARIATE STATISTICAL ESTIMATION OF TROPICAL CYCLONE INTENSITY USING FY-3 MWRI BRIGHTNESS TEMPERATURE DATA 被引量:2
3
作者 张淼 邱红 +1 位作者 方翔 卢乃锰 《Journal of Tropical Meteorology》 SCIE 2017年第2期146-154,共9页
A technique for estimating tropical cyclone(TC) intensity over the Western North Pacific utilizing FY-3Microwave Imager(MWRI) data is developed. As a first step, we investigated the relationship between the FY-3 MWRI ... A technique for estimating tropical cyclone(TC) intensity over the Western North Pacific utilizing FY-3Microwave Imager(MWRI) data is developed. As a first step, we investigated the relationship between the FY-3 MWRI brightness temperature(TB) parameters, which are computed in concentric circles or annuli of different radius in different MWRI frequencies, and the TC maximum wind speed(Vmax) from the TC best track data. We found that the parameters of lower frequency channels' minimum TB, mean TB and ratio of pixels over the threshold TB with a radius of 1.0 or 1.5 degrees from the center give higher correlation. Then by applying principal components analysis(PCA)and multiple regression method, we established an estimation model and evaluated it using independent verification data, with the RMSE being 13 kt. The estimated Vmax is always stronger in the early stages of development, but slightly weaker toward the mature stage, and a reversal of positive and negative bias takes place with a boundary of around 70 kt. For the TC that has a larger error, we found that they are often with less organized and asymmetric cloud pattern, so the classification of TC cloud pattern will help improve the acuracy of the estimated TC intensity, and with the increase of statistical samples the accuracy of the estimated TC intensity will also be improved. 展开更多
关键词 tropical cyclone intensity multivariate statistical estimate FY-3 microwave imager
下载PDF
Revealing the Effects of the El Nio-Southern Oscillation on Tropical Cyclone Intensity over the Western North Pacific from a Model Sensitivity Study 被引量:1
4
作者 周洋 江静 +1 位作者 鹿有余 黄安宁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1117-1128,共12页
Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western N... Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western North Pacific (WNP). In each experiment, bogus TCs are placed at different initial locations, and simulations are conducted with identical initial and boundary conditions. In the first three experiments, the specified atmospheric and SST conditions represent the mean conditions of E1 Nifio, La Nifia, and neutral years. The other two experiments are conducted with the specified atmospheric conditions of E1 Nifio and La Nifia years but with SSTs exchanged. The model results suggest that TCs generated in the southeastern WNP incurred more favorable environmental conditions for development than TCs generated elsewhere. The different TC intensities between E1 Nifio and La Nifia years are caused by difference in TC genesis location and low-level vorticity (VOR). VOR plays a significant role in the intensities of TCs with the same genesis locations between E1 Nifio and La Nina years. 展开更多
关键词 tropical cyclone intensity western North Pacific ENSO MM5 low level vorticity
下载PDF
EFFECTS OF VERTICAL WIND SHEAR ON TROPICAL CYCLONE INTENSITY CHANGE 被引量:1
5
作者 白莉娜 王元 《Journal of Tropical Meteorology》 SCIE 2016年第1期11-18,共8页
The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the... The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results. 展开更多
关键词 tropical cyclone intensity change statistical analysis environmental vertical wind shear TC intensity prediction scheme
下载PDF
Influence of Sea Surface Temperature on the Predictability of Idealized Tropical Cyclone Intensity 被引量:1
6
作者 ZHONG Quan-jia LI Jian-ping +3 位作者 LI Shu-wen WANG Yuan DING Rui-qiang ZHANG Li-feng 《Journal of Tropical Meteorology》 SCIE 2021年第4期355-367,共13页
The role of sea surface temperature(SST)forcing in the development and predictability of tropical cyclone(TC)intensity is examined using a large set of idealized numerical experiments in the Weather Research and Forec... The role of sea surface temperature(SST)forcing in the development and predictability of tropical cyclone(TC)intensity is examined using a large set of idealized numerical experiments in the Weather Research and Forecasting(WRF)model.The results indicate that the onset time of rapid intensification of TC gradually decreases,and the peak intensity of TC gradually increases,with the increased magnitude of SST.The predictability limits of the maximum 10 m wind speed(MWS)and minimum sea level pressure(MSLP)are~72 and~84 hours,respectively.Comparisons of the analyses of variance for different simulation time confirm that the MWS and MSLP have strong signal-to-noise ratios(SNR)from 0-72 hours and a marked decrease beyond 72 hours.For the horizontal and vertical structures of wind speed,noticeable decreases in the magnitude of SNR can be seen as the simulation time increases,similar to that of the SLP or perturbation pressure.These results indicate that the SST as an external forcing signal plays an important role in TC intensity for up to 72 hours,and it is significantly weakened if the simulation time exceeds the predictability limits of TC intensity. 展开更多
关键词 PREDICTABILITY nonlinear local Lyapunov exponent signal-to-noise ratios tropical cyclone intensity sea surface temperature
下载PDF
Importance of Air-Sea Coupling in Simulating Tropical Cyclone Intensity at Landfall
7
作者 Charlie C.F.LOK Johnny C.L.CHAN Ralf TOUMI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第10期1777-1786,共10页
An atmosphere-only model system for making seasonal prediction and projecting future intensities of landfalling tropical cyclones(TCs)along the South China coast is upgraded by including ocean and wave models.A total ... An atmosphere-only model system for making seasonal prediction and projecting future intensities of landfalling tropical cyclones(TCs)along the South China coast is upgraded by including ocean and wave models.A total of 642 TCs have been re-simulated using the new system to produce a climatology of TC intensity in the South China Sea.Detailed comparisons of the simulations from the atmosphere-only and the fully coupled systems reveal that the inclusion of the additional ocean and wave models enable differential sea surface temperature responses to various TC characteristics such as translational speed and size.In particular,interaction with the ocean does not necessarily imply a weakening of the TC,with the coastal bathymetry possibly playing a role in causing a near-shore intensification of the TC.These results suggest that to simulate the evolution of TC structure more accurately,it is essential to use an air-sea coupled model instead of an atmosphere-only model. 展开更多
关键词 tropical cyclone intensity tropical cyclone landfall seasonal prediction air-sea coupling
下载PDF
A NOVEL CLASSIFICATION METHOD FOR TROPICAL CYCLONE INTENSITY CHANGE ANALYSIS BASED ON HIERARCHICAL PARTICLE SWARM OPTIMIZATION ALGORITHM
8
作者 耿焕同 孙家清 +1 位作者 张伟 吴正雪 《Journal of Tropical Meteorology》 SCIE 2017年第1期113-120,共8页
Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive... Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive classification rule, and apply the optimized classification rule to the forecasting of TC intensity change. In the process of the optimization, the strategy of hierarchical pruning has been adopted in the PSO algorithm to narrow the search area,and thus to enhance the local search ability, i.e. hierarchical PSO algorithm. The TC intensity classification rule involves core attributes including 12-HMWS, MPI, and Rainrate which play vital roles in TC intensity change. The testing accuracy using the new mined rule by hierarchical PSO algorithm reaches 89.6%. The current study shows that the novel classification method for TC intensity change analysis based on hierarchic PSO algorithm is not only easy to explain the source of rule core attributes, but also has great potential to improve the forecasting of TC intensity change. 展开更多
关键词 tropical cyclone intensity hierarchical PSO algorithm classification and forecasting C4 5 Algorithm
下载PDF
The Dynamic and Thermodynamic Effects of Relative and Absolute Sea Surface Temperature on Tropical Cyclone Intensity 被引量:6
9
作者 孙源 钟中 +2 位作者 哈瑶 王元 王晓丹 《Acta meteorologica Sinica》 SCIE 2013年第1期40-49,共10页
Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST withi... Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST within a radius of 2-3 times the radius of maximum wind contributes positively and greatly to TC intensity, while the remote SST far away from the TC center could reduce storm intensity. The change of air sea temperature and moisture differences may be the reason why TC intensity is more sensitive to the relative rather than the absolute SST. As the inflow air moves toward the eyewall, warmer (colder) remote SST can gradually increase (decrease) the underlying surface air temperature and moisture, and thus decrease (increase) the air sea temperature and moisture differences, which lead to less (more) energy fluxes entering the eyewall and then decrease (increase) the TC intensity and make it less sensitive to the absolute SST change. Finally, with all the related dynamic and thermodynamic processes being taken into account, a schematic diagram for the effects of relative SST and absolute SST on TC intensity is proposed. 展开更多
关键词 sea surface temperature tropical cyclone intensity air sea temperature and moisture differ-ences surface flux
原文传递
STATISTICAL AND COMPOSITE ANALYSIS OF RELATIONSHIP BETWEEN THE NUMBER OF CONVECTIVE CORES AND THE CHARACTERISTICS OF TBB WITHIN THE TROPICAL CYCLONE CIRCULATION AND ITS INTENSITY 被引量:1
10
作者 曹钰 岳彩军 寿绍文 《Journal of Tropical Meteorology》 SCIE 2015年第1期1-13,共13页
Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the... Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the Black Body Temperature(TBB) of the Japanese geostationary meteorological satellite M1 TR IR1, and combining13 tropical cyclones which landed in China again after visiting the island of Taiwan during the period from 2001 to2010, we analyzed the relationship between the number of convective cores within TC circulation and the intensity of TC with the method of convective-stratiform technique(CST) and statistical and composite analysis. The results are shown as follows:(1) The number of convective cores in the entire TC circulation is well corresponding with the outer spiral rainbands and the density of convective cores in the inner core area increases(decreases) generally with increasing(decreasing) TC intensity. At the same time, the number of convective cores within the outer spiral rainbands is more than that within the inner core and does not change much with the TC intensity. However, the density of convective cores within the outer spiral rainbands is lower than that within the inner core.(2) The relationship described above is sensitive to landing location to some extent but not sensitive to the structure of TC.(3) The average value of TBB in the inner core area increases(decreases) generally with increasing(decreasing) of TC intensity, which is also sensitive to landing situation to some extent. At the same time, the average value of TBB within the outer spiral rainbands is close to that within the entire TC circulation, and both of them are more than that within the inner core. However, they do not reflect TC intensity change significantly.(4) The results of statistical composite based on convective cores and TBB are complementary with each other, so a combination of both can reflect the relationship between TC rainbands and TC intensity much better. 展开更多
关键词 synoptic meteorology tropical cyclone intensity number of convective cores TBB statistical composite
下载PDF
ANALYSIS OF TROPICAL CYCLONE PRECIPITATION FOR DIFFERENT INTENSITY CLASS IN NORTHWEST PACIFIC WITH TRMM DATA
11
作者 刘喆 白洁 +3 位作者 黄兵 严军 周著华 张文军 《Journal of Tropical Meteorology》 SCIE 2016年第2期118-126,共9页
Combined with TRMM products and Tropical Cyclone(TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009,a total of 118 TCs,including 336 instantaneous TC precipitation observations are establ... Combined with TRMM products and Tropical Cyclone(TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009,a total of 118 TCs,including 336 instantaneous TC precipitation observations are established as the TRMM TC database,and the database is stratified into four intensity classes according to the standard of TC intensity adopted by China Meteorological Administration(CMA):Severe Tropical Storm(STS),Typhoon(TY),Severe Typhoon(STY) and Super Typhoon(SuperT Y).For each TC snapshot,the mean rainfall distribution is computed using 10-km annuli from the TC center to a 300-km radius,then the axisymmetric component of TC rainfall is represented by the radial distribution of the azimuthal mean rain rate;the mean rain rates,rain types occurrence and contribution proportion are computed for each TC intensity class;and the mean quadrantal distribution of rain rates along TCs motion is analyzed.The result shows that:(1) TCs mean rain rates increase with their intensity classes,and their radial distributions show single-peak characteristic gradually,and furthermore,the characteristics of rain rates occurrence and contribution proportion change from dual-peak to single-peak distribution,with the peak rain rate at about 5.0mm/h;(2) Stratiform rain dominate the rain type in the analysis zone,while convective rain mainly occurred in the eye-wall region;(3) The values of mean rain rate in each quadrant along TCs motion are close to each other,relatively,the value in the right-rear quadrant is the smallest one. 展开更多
关键词 TRMM tropical cyclone intensity class precipitation
下载PDF
On Sea Surface Roughness Parameterization and Its Effect on Tropical Cyclone Structure and Intensity 被引量:11
12
作者 曾智华 Yuqing WANG +2 位作者 端义宏 陈联寿 高志球 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第2期337-355,共19页
A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning ... A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning System (GPS) dropsonde. It reproduces the observed regime transition, namely, an increase of the drag coefficient with an increase in wind speed up to 40 m s-1 , followed by a decrease with a further increase in wind speed. The effect of this parameterization on the structure and intensity of TCs is evaluated using a newly developed numerical model, TCM4. The results show that the final intensity is increased by 10.5% (8.9%) in the maximum surface wind speed and by 8.1 hPa (5.9 hPa) in the minimum sea surface pressure drop with (without) dissipative heating. This intensity increase is found to be due mainly to the reduced frictional dissipation in the surface layer and little to do with either the surface enthalpy flux or latent heat release in the eyewall convection. The effect of the new parameterization on the storm structure is found to be insignificant and occurs only in the inner core region with the increase in tangential winds in the eyewall and the increase in temperature anomalies in the eye. This is because the difference in drag coefficient appears only in a small area under the eyewall. Implications of the results are briefly discussed. 展开更多
关键词 sea surface roughness tropical cyclone tropical cyclone structure and intensity drag coefficient numerical model
下载PDF
Influence of Future Tropical Cyclone Track Changes on Their Basin-Wide Intensity over the Western North Pacific: Downscaled CMIP5 Projections 被引量:4
13
作者 WANG Chao WU Liguang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期613-623,共11页
The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments de... The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change. 展开更多
关键词 tropical cyclone track and intensity climate change DOWNSCALING CMIP5
下载PDF
Growing Threat of Rapidly-Intensifying Tropical Cyclones in East Asia
14
作者 Kin Sik LIU Johnny C.L.CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第2期222-234,共13页
This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of R... This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of RI-TCs over the western North Pacific and the northwestward shift of their genesis location lead to an increasing trend in the annual number of landfalling RI-TCs along the coast of East Asia. The annual power dissipation index(PDI), a measure of the destructive potential of RI-TCs at landfall, also shows a significant increasing trend due to increases in the annual frequency and mean landfall intensity of landfalling RI-TCs. The increase in mean landfall intensity is related to a higher lifetime maximum intensity(LMI) and the LMI location of the landfalling RI-TCs being closer to the coast. The increase in the annual PDI of East Asia is mainly associated with landfalling TCs in the southern(the Philippines, South China, and Vietnam) and northern parts(Japan and the Korean Peninsula) of East Asia due to long-term changes in vertical wind shear and TC heat potential. The former leads to a northwestward shift of favorable environments for TC genesis and intensification, resulting in the northwestward shift in the genesis, RI, and LMI locations of RI-TCs. The latter provides more heat energy from the ocean for TC intensification, increasing its chances to undergo RI. 展开更多
关键词 tropical cyclone landfall tropical cyclone intensity climate change rapid intensification
下载PDF
Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 1948–2010 被引量:5
15
作者 ZHAO Haikun WU Liguang WANG Ruifang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期57-65,共9页
Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin... Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations. 展开更多
关键词 decadal variations intense tropical cyclones numerical simulation western North Pacific
下载PDF
Evaluation of Two Initialization Schemes for Simulating the Rapid Intensification of Typhoon Lekima (2019) 被引量:3
16
作者 Donglei SHI Guanghua CHEN +2 位作者 Ke WANG Xinxin BI Kexin CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第9期987-1006,共20页
Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisy... Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisymmetric TC vortex in the initial conditions is spun up through the 6-h cycle runs before the initial forecast time.The second scheme is a bogussing scheme where the analysis TC vortex is replaced by a synthetic Rankine vortex.Results show that although both initialization schemes can help improve the simulated rapid intensification(RI)of Lekima,the simulation employing the DI scheme(DIS)reproduces better the RI onset and intensification rate than that employing the bogussing scheme(BOG).Further analyses show the cycle runs of DI help establish a realistic TC structure with stronger secondary circulation than those in the control run and BOG,leading to fast vortex spinup and contraction of the radius of maximum wind(RMW).The resultant strong inner-core primary circulation favors precession of the midlevel vortex under the moderate vertical wind shear(VWS)and thus helps vortex alignment,contributing to an earlier RI onset.Afterwards,the decreased vertical shear and the stronger convection inside the RMW support the persistent RI of Lekima in DIS.In contrast,the reduced VWS is not well captured and the inner-core convection is weaker and resides farther away from the TC center in BOG,leading to slower intensification.The results imply that the DI effectively improves the prediction of the inner-core process,which is crucial to the RI forecast. 展开更多
关键词 numerical simulation initialization scheme tropical cyclone intensity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部