A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment comp...A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.展开更多
The spatial-temporal patterns of tropical cyclone(TC) intensity changes caused by the warm ocean mesoscale eddy(WOME) distribution are evaluated using two sets of idealized numerical experiments. The results show that...The spatial-temporal patterns of tropical cyclone(TC) intensity changes caused by the warm ocean mesoscale eddy(WOME) distribution are evaluated using two sets of idealized numerical experiments. The results show that the TC was intensified and weakened when a WOME was close to and far away from the TC center, respectively.The area where the WOME enhanced(weakened) TC intensity is called the inner(outer) area in this study.Amplitudes of the enhancement and weakening caused by the WOME in the inner and outer area decreased and increased over time, while the ranges of the inner and outer area diminished and expanded, respectively. The WOME in the inner area strengthened the secondary circulation of the TC, increased heat fluxes, strengthened the symmetry, and weakened the outer spiral rainband, which enhanced TC intensity. The effect was opposite if the WOME was in the outer area, and it weakened the TC intensity. The idealized simulation employed a stationary TC, and thus the results may only be applied to TCs with slow propagation. These findings can improve our understanding of the interactions between TC and the WOME and are helpful for improving TC intensity forecasting by considering the effect of the WOME in the outer areas.展开更多
A technique for estimating tropical cyclone(TC) intensity over the Western North Pacific utilizing FY-3Microwave Imager(MWRI) data is developed. As a first step, we investigated the relationship between the FY-3 MWRI ...A technique for estimating tropical cyclone(TC) intensity over the Western North Pacific utilizing FY-3Microwave Imager(MWRI) data is developed. As a first step, we investigated the relationship between the FY-3 MWRI brightness temperature(TB) parameters, which are computed in concentric circles or annuli of different radius in different MWRI frequencies, and the TC maximum wind speed(Vmax) from the TC best track data. We found that the parameters of lower frequency channels' minimum TB, mean TB and ratio of pixels over the threshold TB with a radius of 1.0 or 1.5 degrees from the center give higher correlation. Then by applying principal components analysis(PCA)and multiple regression method, we established an estimation model and evaluated it using independent verification data, with the RMSE being 13 kt. The estimated Vmax is always stronger in the early stages of development, but slightly weaker toward the mature stage, and a reversal of positive and negative bias takes place with a boundary of around 70 kt. For the TC that has a larger error, we found that they are often with less organized and asymmetric cloud pattern, so the classification of TC cloud pattern will help improve the acuracy of the estimated TC intensity, and with the increase of statistical samples the accuracy of the estimated TC intensity will also be improved.展开更多
Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western N...Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western North Pacific (WNP). In each experiment, bogus TCs are placed at different initial locations, and simulations are conducted with identical initial and boundary conditions. In the first three experiments, the specified atmospheric and SST conditions represent the mean conditions of E1 Nifio, La Nifia, and neutral years. The other two experiments are conducted with the specified atmospheric conditions of E1 Nifio and La Nifia years but with SSTs exchanged. The model results suggest that TCs generated in the southeastern WNP incurred more favorable environmental conditions for development than TCs generated elsewhere. The different TC intensities between E1 Nifio and La Nifia years are caused by difference in TC genesis location and low-level vorticity (VOR). VOR plays a significant role in the intensities of TCs with the same genesis locations between E1 Nifio and La Nina years.展开更多
The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the...The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results.展开更多
The role of sea surface temperature(SST)forcing in the development and predictability of tropical cyclone(TC)intensity is examined using a large set of idealized numerical experiments in the Weather Research and Forec...The role of sea surface temperature(SST)forcing in the development and predictability of tropical cyclone(TC)intensity is examined using a large set of idealized numerical experiments in the Weather Research and Forecasting(WRF)model.The results indicate that the onset time of rapid intensification of TC gradually decreases,and the peak intensity of TC gradually increases,with the increased magnitude of SST.The predictability limits of the maximum 10 m wind speed(MWS)and minimum sea level pressure(MSLP)are~72 and~84 hours,respectively.Comparisons of the analyses of variance for different simulation time confirm that the MWS and MSLP have strong signal-to-noise ratios(SNR)from 0-72 hours and a marked decrease beyond 72 hours.For the horizontal and vertical structures of wind speed,noticeable decreases in the magnitude of SNR can be seen as the simulation time increases,similar to that of the SLP or perturbation pressure.These results indicate that the SST as an external forcing signal plays an important role in TC intensity for up to 72 hours,and it is significantly weakened if the simulation time exceeds the predictability limits of TC intensity.展开更多
An atmosphere-only model system for making seasonal prediction and projecting future intensities of landfalling tropical cyclones(TCs)along the South China coast is upgraded by including ocean and wave models.A total ...An atmosphere-only model system for making seasonal prediction and projecting future intensities of landfalling tropical cyclones(TCs)along the South China coast is upgraded by including ocean and wave models.A total of 642 TCs have been re-simulated using the new system to produce a climatology of TC intensity in the South China Sea.Detailed comparisons of the simulations from the atmosphere-only and the fully coupled systems reveal that the inclusion of the additional ocean and wave models enable differential sea surface temperature responses to various TC characteristics such as translational speed and size.In particular,interaction with the ocean does not necessarily imply a weakening of the TC,with the coastal bathymetry possibly playing a role in causing a near-shore intensification of the TC.These results suggest that to simulate the evolution of TC structure more accurately,it is essential to use an air-sea coupled model instead of an atmosphere-only model.展开更多
Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive...Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive classification rule, and apply the optimized classification rule to the forecasting of TC intensity change. In the process of the optimization, the strategy of hierarchical pruning has been adopted in the PSO algorithm to narrow the search area,and thus to enhance the local search ability, i.e. hierarchical PSO algorithm. The TC intensity classification rule involves core attributes including 12-HMWS, MPI, and Rainrate which play vital roles in TC intensity change. The testing accuracy using the new mined rule by hierarchical PSO algorithm reaches 89.6%. The current study shows that the novel classification method for TC intensity change analysis based on hierarchic PSO algorithm is not only easy to explain the source of rule core attributes, but also has great potential to improve the forecasting of TC intensity change.展开更多
Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST withi...Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST within a radius of 2-3 times the radius of maximum wind contributes positively and greatly to TC intensity, while the remote SST far away from the TC center could reduce storm intensity. The change of air sea temperature and moisture differences may be the reason why TC intensity is more sensitive to the relative rather than the absolute SST. As the inflow air moves toward the eyewall, warmer (colder) remote SST can gradually increase (decrease) the underlying surface air temperature and moisture, and thus decrease (increase) the air sea temperature and moisture differences, which lead to less (more) energy fluxes entering the eyewall and then decrease (increase) the TC intensity and make it less sensitive to the absolute SST change. Finally, with all the related dynamic and thermodynamic processes being taken into account, a schematic diagram for the effects of relative SST and absolute SST on TC intensity is proposed.展开更多
Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the...Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the Black Body Temperature(TBB) of the Japanese geostationary meteorological satellite M1 TR IR1, and combining13 tropical cyclones which landed in China again after visiting the island of Taiwan during the period from 2001 to2010, we analyzed the relationship between the number of convective cores within TC circulation and the intensity of TC with the method of convective-stratiform technique(CST) and statistical and composite analysis. The results are shown as follows:(1) The number of convective cores in the entire TC circulation is well corresponding with the outer spiral rainbands and the density of convective cores in the inner core area increases(decreases) generally with increasing(decreasing) TC intensity. At the same time, the number of convective cores within the outer spiral rainbands is more than that within the inner core and does not change much with the TC intensity. However, the density of convective cores within the outer spiral rainbands is lower than that within the inner core.(2) The relationship described above is sensitive to landing location to some extent but not sensitive to the structure of TC.(3) The average value of TBB in the inner core area increases(decreases) generally with increasing(decreasing) of TC intensity, which is also sensitive to landing situation to some extent. At the same time, the average value of TBB within the outer spiral rainbands is close to that within the entire TC circulation, and both of them are more than that within the inner core. However, they do not reflect TC intensity change significantly.(4) The results of statistical composite based on convective cores and TBB are complementary with each other, so a combination of both can reflect the relationship between TC rainbands and TC intensity much better.展开更多
Combined with TRMM products and Tropical Cyclone(TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009,a total of 118 TCs,including 336 instantaneous TC precipitation observations are establ...Combined with TRMM products and Tropical Cyclone(TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009,a total of 118 TCs,including 336 instantaneous TC precipitation observations are established as the TRMM TC database,and the database is stratified into four intensity classes according to the standard of TC intensity adopted by China Meteorological Administration(CMA):Severe Tropical Storm(STS),Typhoon(TY),Severe Typhoon(STY) and Super Typhoon(SuperT Y).For each TC snapshot,the mean rainfall distribution is computed using 10-km annuli from the TC center to a 300-km radius,then the axisymmetric component of TC rainfall is represented by the radial distribution of the azimuthal mean rain rate;the mean rain rates,rain types occurrence and contribution proportion are computed for each TC intensity class;and the mean quadrantal distribution of rain rates along TCs motion is analyzed.The result shows that:(1) TCs mean rain rates increase with their intensity classes,and their radial distributions show single-peak characteristic gradually,and furthermore,the characteristics of rain rates occurrence and contribution proportion change from dual-peak to single-peak distribution,with the peak rain rate at about 5.0mm/h;(2) Stratiform rain dominate the rain type in the analysis zone,while convective rain mainly occurred in the eye-wall region;(3) The values of mean rain rate in each quadrant along TCs motion are close to each other,relatively,the value in the right-rear quadrant is the smallest one.展开更多
A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning ...A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning System (GPS) dropsonde. It reproduces the observed regime transition, namely, an increase of the drag coefficient with an increase in wind speed up to 40 m s-1 , followed by a decrease with a further increase in wind speed. The effect of this parameterization on the structure and intensity of TCs is evaluated using a newly developed numerical model, TCM4. The results show that the final intensity is increased by 10.5% (8.9%) in the maximum surface wind speed and by 8.1 hPa (5.9 hPa) in the minimum sea surface pressure drop with (without) dissipative heating. This intensity increase is found to be due mainly to the reduced frictional dissipation in the surface layer and little to do with either the surface enthalpy flux or latent heat release in the eyewall convection. The effect of the new parameterization on the storm structure is found to be insignificant and occurs only in the inner core region with the increase in tangential winds in the eyewall and the increase in temperature anomalies in the eye. This is because the difference in drag coefficient appears only in a small area under the eyewall. Implications of the results are briefly discussed.展开更多
The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments de...The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change.展开更多
This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of R...This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of RI-TCs over the western North Pacific and the northwestward shift of their genesis location lead to an increasing trend in the annual number of landfalling RI-TCs along the coast of East Asia. The annual power dissipation index(PDI), a measure of the destructive potential of RI-TCs at landfall, also shows a significant increasing trend due to increases in the annual frequency and mean landfall intensity of landfalling RI-TCs. The increase in mean landfall intensity is related to a higher lifetime maximum intensity(LMI) and the LMI location of the landfalling RI-TCs being closer to the coast. The increase in the annual PDI of East Asia is mainly associated with landfalling TCs in the southern(the Philippines, South China, and Vietnam) and northern parts(Japan and the Korean Peninsula) of East Asia due to long-term changes in vertical wind shear and TC heat potential. The former leads to a northwestward shift of favorable environments for TC genesis and intensification, resulting in the northwestward shift in the genesis, RI, and LMI locations of RI-TCs. The latter provides more heat energy from the ocean for TC intensification, increasing its chances to undergo RI.展开更多
Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin...Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.展开更多
Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisy...Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisymmetric TC vortex in the initial conditions is spun up through the 6-h cycle runs before the initial forecast time.The second scheme is a bogussing scheme where the analysis TC vortex is replaced by a synthetic Rankine vortex.Results show that although both initialization schemes can help improve the simulated rapid intensification(RI)of Lekima,the simulation employing the DI scheme(DIS)reproduces better the RI onset and intensification rate than that employing the bogussing scheme(BOG).Further analyses show the cycle runs of DI help establish a realistic TC structure with stronger secondary circulation than those in the control run and BOG,leading to fast vortex spinup and contraction of the radius of maximum wind(RMW).The resultant strong inner-core primary circulation favors precession of the midlevel vortex under the moderate vertical wind shear(VWS)and thus helps vortex alignment,contributing to an earlier RI onset.Afterwards,the decreased vertical shear and the stronger convection inside the RMW support the persistent RI of Lekima in DIS.In contrast,the reduced VWS is not well captured and the inner-core convection is weaker and resides farther away from the TC center in BOG,leading to slower intensification.The results imply that the DI effectively improves the prediction of the inner-core process,which is crucial to the RI forecast.展开更多
基金sponsored by the National Natural Science Foundation of China under Grant Nos.49975014,40275018,and 40333025
文摘A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
基金The National Natural Science Foundation of China under contract No.41706034the Basic Scientific Fund for National Public Research Institutes of China under contract No.2020Q05+7 种基金the Open Fund of the Key Laboratory of Ocean Circulation and WavesChinese Academy of Sciences under contract Nos KLOCW1803 and KLOCW1804the Open Fund of the Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and Technology under contract No.2019A02the National Natural Science Foundation of China under contract Nos 91428206 and 41376038the National Science and Technology Major Project under contract No.2016ZX05057015the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-03-01-01-02 and GASI-IPOVAI-01-05the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405。
文摘The spatial-temporal patterns of tropical cyclone(TC) intensity changes caused by the warm ocean mesoscale eddy(WOME) distribution are evaluated using two sets of idealized numerical experiments. The results show that the TC was intensified and weakened when a WOME was close to and far away from the TC center, respectively.The area where the WOME enhanced(weakened) TC intensity is called the inner(outer) area in this study.Amplitudes of the enhancement and weakening caused by the WOME in the inner and outer area decreased and increased over time, while the ranges of the inner and outer area diminished and expanded, respectively. The WOME in the inner area strengthened the secondary circulation of the TC, increased heat fluxes, strengthened the symmetry, and weakened the outer spiral rainband, which enhanced TC intensity. The effect was opposite if the WOME was in the outer area, and it weakened the TC intensity. The idealized simulation employed a stationary TC, and thus the results may only be applied to TCs with slow propagation. These findings can improve our understanding of the interactions between TC and the WOME and are helpful for improving TC intensity forecasting by considering the effect of the WOME in the outer areas.
基金National Key Research and Development Program of China(2016YFA0600101)National Basic Research Program of China(973 Program,2010CB950802)National Natural Science Fund(41605028)
文摘A technique for estimating tropical cyclone(TC) intensity over the Western North Pacific utilizing FY-3Microwave Imager(MWRI) data is developed. As a first step, we investigated the relationship between the FY-3 MWRI brightness temperature(TB) parameters, which are computed in concentric circles or annuli of different radius in different MWRI frequencies, and the TC maximum wind speed(Vmax) from the TC best track data. We found that the parameters of lower frequency channels' minimum TB, mean TB and ratio of pixels over the threshold TB with a radius of 1.0 or 1.5 degrees from the center give higher correlation. Then by applying principal components analysis(PCA)and multiple regression method, we established an estimation model and evaluated it using independent verification data, with the RMSE being 13 kt. The estimated Vmax is always stronger in the early stages of development, but slightly weaker toward the mature stage, and a reversal of positive and negative bias takes place with a boundary of around 70 kt. For the TC that has a larger error, we found that they are often with less organized and asymmetric cloud pattern, so the classification of TC cloud pattern will help improve the acuracy of the estimated TC intensity, and with the increase of statistical samples the accuracy of the estimated TC intensity will also be improved.
基金support from the National Natural Science Foundation of China (NSFC: Grant No. 41175090 and 41175086)support from the NSFC (Grant No. 40975040)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 1116020701)"A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions"
文摘Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western North Pacific (WNP). In each experiment, bogus TCs are placed at different initial locations, and simulations are conducted with identical initial and boundary conditions. In the first three experiments, the specified atmospheric and SST conditions represent the mean conditions of E1 Nifio, La Nifia, and neutral years. The other two experiments are conducted with the specified atmospheric conditions of E1 Nifio and La Nifia years but with SSTs exchanged. The model results suggest that TCs generated in the southeastern WNP incurred more favorable environmental conditions for development than TCs generated elsewhere. The different TC intensities between E1 Nifio and La Nifia years are caused by difference in TC genesis location and low-level vorticity (VOR). VOR plays a significant role in the intensities of TCs with the same genesis locations between E1 Nifio and La Nina years.
基金National Natural Science Foundation of China(41405060,41475082,41305049,41275067,41475059)
文摘The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results.
基金National Natural Science Foundation of China(42105059,41975070,42005053)。
文摘The role of sea surface temperature(SST)forcing in the development and predictability of tropical cyclone(TC)intensity is examined using a large set of idealized numerical experiments in the Weather Research and Forecasting(WRF)model.The results indicate that the onset time of rapid intensification of TC gradually decreases,and the peak intensity of TC gradually increases,with the increased magnitude of SST.The predictability limits of the maximum 10 m wind speed(MWS)and minimum sea level pressure(MSLP)are~72 and~84 hours,respectively.Comparisons of the analyses of variance for different simulation time confirm that the MWS and MSLP have strong signal-to-noise ratios(SNR)from 0-72 hours and a marked decrease beyond 72 hours.For the horizontal and vertical structures of wind speed,noticeable decreases in the magnitude of SNR can be seen as the simulation time increases,similar to that of the SLP or perturbation pressure.These results indicate that the SST as an external forcing signal plays an important role in TC intensity for up to 72 hours,and it is significantly weakened if the simulation time exceeds the predictability limits of TC intensity.
基金supported by Hong Kong Research Grants Council Grant CityU E-CityU101/16supported by the Natural Environment Research Council/UKRI(Grant No.NE/V017756/1).
文摘An atmosphere-only model system for making seasonal prediction and projecting future intensities of landfalling tropical cyclones(TCs)along the South China coast is upgraded by including ocean and wave models.A total of 642 TCs have been re-simulated using the new system to produce a climatology of TC intensity in the South China Sea.Detailed comparisons of the simulations from the atmosphere-only and the fully coupled systems reveal that the inclusion of the additional ocean and wave models enable differential sea surface temperature responses to various TC characteristics such as translational speed and size.In particular,interaction with the ocean does not necessarily imply a weakening of the TC,with the coastal bathymetry possibly playing a role in causing a near-shore intensification of the TC.These results suggest that to simulate the evolution of TC structure more accurately,it is essential to use an air-sea coupled model instead of an atmosphere-only model.
基金National Natural Science Foundation of China(41201045)Jiangsu Qing Lan Project(2016)Natural Science Foundation of Jiangsu Province(BK20151458)
文摘Based on the tropical cyclone(TC) observations in the western North Pacific from 2000 to 2008, this paper adopts the particle swarm optimization(PSO) algorithm of evolutionary computation to optimize one comprehensive classification rule, and apply the optimized classification rule to the forecasting of TC intensity change. In the process of the optimization, the strategy of hierarchical pruning has been adopted in the PSO algorithm to narrow the search area,and thus to enhance the local search ability, i.e. hierarchical PSO algorithm. The TC intensity classification rule involves core attributes including 12-HMWS, MPI, and Rainrate which play vital roles in TC intensity change. The testing accuracy using the new mined rule by hierarchical PSO algorithm reaches 89.6%. The current study shows that the novel classification method for TC intensity change analysis based on hierarchic PSO algorithm is not only easy to explain the source of rule core attributes, but also has great potential to improve the forecasting of TC intensity change.
基金Supported by the National Natural Science Foundation of China(41175090 and 40830958)National High Technology Research and Development(863)Program of China(2012AA091801)
文摘Several numerical experiments were performed to investigate the dynamic and thermodynamic effects of sea surface temperature (SST) on tropical cyclone (TC) intensity. The results reveal that the relative SST within a radius of 2-3 times the radius of maximum wind contributes positively and greatly to TC intensity, while the remote SST far away from the TC center could reduce storm intensity. The change of air sea temperature and moisture differences may be the reason why TC intensity is more sensitive to the relative rather than the absolute SST. As the inflow air moves toward the eyewall, warmer (colder) remote SST can gradually increase (decrease) the underlying surface air temperature and moisture, and thus decrease (increase) the air sea temperature and moisture differences, which lead to less (more) energy fluxes entering the eyewall and then decrease (increase) the TC intensity and make it less sensitive to the absolute SST change. Finally, with all the related dynamic and thermodynamic processes being taken into account, a schematic diagram for the effects of relative SST and absolute SST on TC intensity is proposed.
基金National Natural Science Foundation of China(NSFC)(40875025,41175050,41475039 and41475041)Shanghai Natural Science Foundation of China(08ZR1422900)Public Sector(Meteorology)Research of China(GYHY201306012)
文摘Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the Black Body Temperature(TBB) of the Japanese geostationary meteorological satellite M1 TR IR1, and combining13 tropical cyclones which landed in China again after visiting the island of Taiwan during the period from 2001 to2010, we analyzed the relationship between the number of convective cores within TC circulation and the intensity of TC with the method of convective-stratiform technique(CST) and statistical and composite analysis. The results are shown as follows:(1) The number of convective cores in the entire TC circulation is well corresponding with the outer spiral rainbands and the density of convective cores in the inner core area increases(decreases) generally with increasing(decreasing) TC intensity. At the same time, the number of convective cores within the outer spiral rainbands is more than that within the inner core and does not change much with the TC intensity. However, the density of convective cores within the outer spiral rainbands is lower than that within the inner core.(2) The relationship described above is sensitive to landing location to some extent but not sensitive to the structure of TC.(3) The average value of TBB in the inner core area increases(decreases) generally with increasing(decreasing) of TC intensity, which is also sensitive to landing situation to some extent. At the same time, the average value of TBB within the outer spiral rainbands is close to that within the entire TC circulation, and both of them are more than that within the inner core. However, they do not reflect TC intensity change significantly.(4) The results of statistical composite based on convective cores and TBB are complementary with each other, so a combination of both can reflect the relationship between TC rainbands and TC intensity much better.
基金National Nature Science Foundation of China(41205017)Pre-Research Foundation of General Equipment Department(9140A22060215JB09349)
文摘Combined with TRMM products and Tropical Cyclone(TC) best track data in Northwest Pacific from 1 January 2003 to 31 December 2009,a total of 118 TCs,including 336 instantaneous TC precipitation observations are established as the TRMM TC database,and the database is stratified into four intensity classes according to the standard of TC intensity adopted by China Meteorological Administration(CMA):Severe Tropical Storm(STS),Typhoon(TY),Severe Typhoon(STY) and Super Typhoon(SuperT Y).For each TC snapshot,the mean rainfall distribution is computed using 10-km annuli from the TC center to a 300-km radius,then the axisymmetric component of TC rainfall is represented by the radial distribution of the azimuthal mean rain rate;the mean rain rates,rain types occurrence and contribution proportion are computed for each TC intensity class;and the mean quadrantal distribution of rain rates along TCs motion is analyzed.The result shows that:(1) TCs mean rain rates increase with their intensity classes,and their radial distributions show single-peak characteristic gradually,and furthermore,the characteristics of rain rates occurrence and contribution proportion change from dual-peak to single-peak distribution,with the peak rain rate at about 5.0mm/h;(2) Stratiform rain dominate the rain type in the analysis zone,while convective rain mainly occurred in the eye-wall region;(3) The values of mean rain rate in each quadrant along TCs motion are close to each other,relatively,the value in the right-rear quadrant is the smallest one.
基金support from the National Basic Research Program of China (973 Program) (No. 2009CB421500)the National Natural Science Foundation of China (GrantNos. 40875039 and 40730948)+3 种基金the Typhoon Research Foundation of Shanghai Typhoon Institute/China Mete-orological Administration (Grant Nos. 2006STB07 and2008ST11)support from the Knowledge Innovation Program of theChinese Academy of Sciences (IAP09318)support from the US Office of Naval Research (Grant No. N00014-021-0532)the National Science Foundation (Grant No. ATM-0427128)
文摘A new parameterization scheme of sea surface momentum roughness length for all wind regimes, including high winds, under tropical cyclone (TC) conditions is constructed based on measurements from Global Positioning System (GPS) dropsonde. It reproduces the observed regime transition, namely, an increase of the drag coefficient with an increase in wind speed up to 40 m s-1 , followed by a decrease with a further increase in wind speed. The effect of this parameterization on the structure and intensity of TCs is evaluated using a newly developed numerical model, TCM4. The results show that the final intensity is increased by 10.5% (8.9%) in the maximum surface wind speed and by 8.1 hPa (5.9 hPa) in the minimum sea surface pressure drop with (without) dissipative heating. This intensity increase is found to be due mainly to the reduced frictional dissipation in the surface layer and little to do with either the surface enthalpy flux or latent heat release in the eyewall convection. The effect of the new parameterization on the storm structure is found to be insignificant and occurs only in the inner core region with the increase in tangential winds in the eyewall and the increase in temperature anomalies in the eye. This is because the difference in drag coefficient appears only in a small area under the eyewall. Implications of the results are briefly discussed.
基金supported by the National Basic Research Program of China (2013CB430103, 2015CB452803)the National Natural Science Foundation of China (NSFC+2 种基金 Grant No. 41275093)the project of the specially-appointed professorship of Jiangsu Provincesupported by the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ13 0496)
文摘The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change.
基金supported by the Research Grants Council of Hong Kong Grant City U ECity U101/16。
文摘This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of RI-TCs over the western North Pacific and the northwestward shift of their genesis location lead to an increasing trend in the annual number of landfalling RI-TCs along the coast of East Asia. The annual power dissipation index(PDI), a measure of the destructive potential of RI-TCs at landfall, also shows a significant increasing trend due to increases in the annual frequency and mean landfall intensity of landfalling RI-TCs. The increase in mean landfall intensity is related to a higher lifetime maximum intensity(LMI) and the LMI location of the landfalling RI-TCs being closer to the coast. The increase in the annual PDI of East Asia is mainly associated with landfalling TCs in the southern(the Philippines, South China, and Vietnam) and northern parts(Japan and the Korean Peninsula) of East Asia due to long-term changes in vertical wind shear and TC heat potential. The former leads to a northwestward shift of favorable environments for TC genesis and intensification, resulting in the northwestward shift in the genesis, RI, and LMI locations of RI-TCs. The latter provides more heat energy from the ocean for TC intensification, increasing its chances to undergo RI.
基金jointly supported by the National Natural Science Foundation of China(Grant No.41305050)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.11KJB170009)+3 种基金the Typhoon Research Project(Grant No.2009CB421503)the Social Commonwealth Research Program of the Ministry of Science and Technology of the People’s Republic of China(Grant No.GYHY200806009)the Key Laboratory of Meteorological Disaster of the Ministry of Education Program(Grant No.KLME1204)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41775063 and 41975071)。
文摘Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisymmetric TC vortex in the initial conditions is spun up through the 6-h cycle runs before the initial forecast time.The second scheme is a bogussing scheme where the analysis TC vortex is replaced by a synthetic Rankine vortex.Results show that although both initialization schemes can help improve the simulated rapid intensification(RI)of Lekima,the simulation employing the DI scheme(DIS)reproduces better the RI onset and intensification rate than that employing the bogussing scheme(BOG).Further analyses show the cycle runs of DI help establish a realistic TC structure with stronger secondary circulation than those in the control run and BOG,leading to fast vortex spinup and contraction of the radius of maximum wind(RMW).The resultant strong inner-core primary circulation favors precession of the midlevel vortex under the moderate vertical wind shear(VWS)and thus helps vortex alignment,contributing to an earlier RI onset.Afterwards,the decreased vertical shear and the stronger convection inside the RMW support the persistent RI of Lekima in DIS.In contrast,the reduced VWS is not well captured and the inner-core convection is weaker and resides farther away from the TC center in BOG,leading to slower intensification.The results imply that the DI effectively improves the prediction of the inner-core process,which is crucial to the RI forecast.