期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Influence of variables related to soil weathering on the geomechanical performance of tropical soils
1
作者 Rodrigo Cesar Pierozan Gregorio Luís Silva Araújo +1 位作者 Ennio Marques Palmeira Celso Romanel 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2423-2440,共18页
This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely... This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely weathered tropical soils with the influence of interparticle bonding.The sand-silt mixtures containing different relative proportions between uniform sand and lateritic soil were produced,and geomechanical soil characterization tests were performed.Based on the results,a transition from a primarily coarse-to a fine-grained prevailing soil structure was found to cause considerable impact on the geomechanical performance of these soils,as evidenced by design variables related to soil mineralogy and size distribution characteristics.Specifically,fines contents of both individual soil particles and soil aggregations were found to correlate with experimental results,while the relative proportion between sesquioxides(aluminum,and iron oxides),and silica,i.e.sesquioxide-silica ratios(SSR^(-1)),facilitated estimates concerning changes in geomechanical performance.Finally,the application of the sandsilt mixtures containing lateritic soil on soil walls reinforced with polymeric strips was also evaluated,further emphasizing the potential advantages of adopting variables related to soil weathering on design guidelines concerning tropical soils. 展开更多
关键词 Sesquioxides-silica ratio tropical soils Sand-silt mixtures Lateritic soil Reinforced soil walls
下载PDF
Long-term impacts of land-use change on dynamics of tropical soil carbon and nitrogen pools 被引量:26
2
作者 YANGJing-cheng HUANGJian-hui +2 位作者 PANQing-min TANGJian-wei HANXing-guo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第2期256-261,共6页
Land-use changes, especially the conversion of native forest vegetation to cropland and plantations in tropical region, can alter soil C and N pools and N availability for plant uptake. Deforestation, followed by shif... Land-use changes, especially the conversion of native forest vegetation to cropland and plantations in tropical region, can alter soil C and N pools and N availability for plant uptake. Deforestation, followed by shifting cultivation and establishment of rubber tree plantation, is a common land-use change in Xishuangbanna, southwest China. However the influence of this kind of land-use change on soil C and N dynamics in this region remains poorly understood. This study was conducted to assess the effects of land-use change on soil C and N pools. Soil samples were collected on five adjacent plots, which belong to three land-use types including secondary forest-an acuminate banana(Musa itinerans) secondary forest and a male bamboo(Dendrocalamus membranaceae) secondary forest, shifting cultivation, and rubber tree (Hevea brasiliensis (H.B.K.) Muell. Arg.) plantation(one plot is 3-year-old, and another is 7-year-old). We measured soil bulk density (BD), pH value, moisture content and concentrations of soil organic carbon(SOC), total soil nitrogen(TSN), and inorganic N(NO - 3-N and NH + 4-N ) at 0—3, 3—20, 20—40 and 40—60 cm depths, and calculated C and N pools in 0—20, 20—40, 40—60, and 0—60 cm soil layers. Compared with the adjacent secondary forests, shifting cultivation and establishment of rubber tree plantations resulted in significant decline in concentrations and stocks of SOC and TSN in 0—20 and 0—60 cm soil layers, and increase in pH and bulk density at 0—3, 3—20, and 20—40 cm depths. Soil moisture content decreased only in 0—20 cm surface soils in shifting cultivation and plantations. The dynamics of mineral N was much more complex, which had different trends among depths and ecosystems. Compared with the secondary forests, SOC stocks in 0—20 cm surface soils in shifting cultivation and rubber tree plantations(3-year-old plantation and 7-year-old plantation) decreased by 34.0%, 33%, and 23%; and TSN stocks decreased by 32 2%, 20.4%, and 20.4%, respectively, whereas the decreases of SOC and TSN stocks in 0—60 cm soil layers were much less. The results indicated that C and N losses were mainly occurred in 0—20 cm surface soil, followed by 20—40 cm layer. 展开更多
关键词 soil organic carbon(SOC) total soil nitrogen(TSN) inorganic nitrogen land-use change tropical soil Xishuangbana
下载PDF
Bioamendment of petroleum contaminated ultisol:effect on oil content, heavy metals and pH of tropical soil 被引量:5
3
作者 E. D. Udosen 1, J. P. Essien 2, R. M. Ubom 2 (1 Department of Chemistry and Biochemistry, University of Uyo, Nigeria 2 Department of Botany and Microbiology, University of Uyo, Nigeria) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第1期92-98,共7页
The effect of organic amendments on the oil content, heavy metals concentration and pH of petroleum contaminated sandy loam ultisol obtained from Rumuekpe oil field in Emohua Local Government Area of Rivers State, Nig... The effect of organic amendments on the oil content, heavy metals concentration and pH of petroleum contaminated sandy loam ultisol obtained from Rumuekpe oil field in Emohua Local Government Area of Rivers State, Nigeria was determined. Petroleum contaminated soils were treated with wood ash, compost and sawdust. The addition of organic amendments resulted in a significant(at 95% probability level) decrease in oil content by 92% for composting, 81% for soil treated with sawdust and 58% for soil with ash supplementation, over 6 months. The effect of treatments on the iron(Fe), copper(Cu) and lead(Pb) concentration was significant at P <0 001. The remediation also affected the pH of soil. This initial pH of 5 6 was depressed by the application of compost and sawdust supplements respectively to a final pH of 5 2 and 5 3. On the other hand, amending the soil with wood ash raised the pH from 5 6 to 6 2. Increased acidity caused a decrease in the heavy metals concentration in the contaminated soil. Soil treatment with compost generally gave the best remediation results, followed by sawdust and then ash. Adjusting the pH of oil contaminated soil to high acidic levels may promote the availability and migration of heavy metals in remediated soils and not necessarily the rate of oil mineralization. 展开更多
关键词 bioamendament tropical soil Nige
下载PDF
Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China 被引量:5
4
作者 Xiu-jin Liu Ke Yang +5 位作者 Fei Guo Shi-qi Tang Ying-han Liu Li Zhang Hang-xin Cheng Fei Liu 《China Geology》 2022年第1期1-11,共11页
To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,S... To illuminate the migration and transformation of selenium(Se)in the igneous rock-soil-rice system,285 pairs of rhizosphere soil and rice samples were collected from the granitoid and basalt areas in Hainan Province,South China.The contents of Se in soils derived from granitoid and basalt are,respectively,0.19±0.12 mg/kg and 0.34±0.39 mg/kg,which are much higher than Se contents in granitoid and basalt.Selenium shows remarkable enrichment from granitoid and basalt to soils.The mobile fraction of Se in soils derived from granitoid is 0.0100±0.0034 mg/kg,which is significantly higher than that of basalt(0.0058±0.0039 mg/kg).Although soil derived from basalt shows higher Se contents,Se contents in rice samples,mobile fractions of Se in soils,and biological concentration factor(BCF)is similar or even lower than that from granitoid.Basalt consist of calcic plagioclase and pyroxene,and are much richer in Fe,Al,and Ca than granitoid.Correspondingly,the basalt-derived soils have higher goethite,hematite,kaolinite,cation exchange capacity(CEC)content,and higher p H than the granitoid-derived soils,which result in higher adsorption capacity for Se and relatively lower Se bioavailability.Soils derived from granitoid and basalt in tropical regions are beneficial to produce Se-rich rice. 展开更多
关键词 SELENIUM GRANITOID BASALT soil properties tropical soil Se-rich rice Agricutural geological survey engineering Hainan Province China
下载PDF
Assessment of the Influence of Oil Palm and Rubber Plantations in Tropical Peat Swamp Soils Using Microbial Diversity and Activity Analysis 被引量:1
5
作者 Yuana Nurulita Eric M. Adetutu +4 位作者 Krishna K. Kadali Esmaeil Shahsavari Delita Zul Mohamed Taha Andrew S. Ball 《Journal of Agricultural Chemistry and Environment》 2016年第2期53-65,共13页
In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through... In this study, tropical peat swamp soils from Giam Siak Kecil-Bukit Batu Biosphere Reserve (GSKBB) in Indonesia was evaluated to assess the impact of oil palm and rubber plantations on this unique organic soil through comparisons with soils from a natural forest using a polyphasic approach (chemical and molecular microbial assays). Changes in the ammonium, nitrate and phosphate concentration were observed in soils converted to agricultural use. Soil enzyme activities in plantation soils showed reduced β-glucosidase, cellobiohydrolase and acid phosphatase activities (50% - 55% decrease). PCR-DGGE based analysis showed that the soil bacterial community from agricultural soils exhibited the lowest similarity amongst the different microbial groups (fungi and Archaea) evaluated (34% similarity to the natural forest soil). Shannon Diversity index values showed that generally the conversion of tropical peatland natural forest to rubber plantation resulted in a greater impact on microbial diversity (ANOVA p < 0.05). Overall, this study indicated substantial shifts in the soil microbial activity and diversity upon conversion of natural peatland forest to agriculture, with a greater change being observed under rubber plantation compared to oil palm plantation. These findings provided important data for future peatland management by relating changes in the soil microbial community and activities associated to agricultural practices carried out on peatland. 展开更多
关键词 tropical Peat Swamp soil Microbial Community soil Enzyme Oil Palm Plantation Rubber Plantation
下载PDF
Soil-Water Charateristics of Tropical Clay Soil under High and Low Suction Conditions
6
作者 Bamitale Dorcas Oluyemi-Ayibiowu Taiwo Olawale Akinleye +1 位作者 Olaolu George Fadugba Ayodeji Stanley Olowoselu 《Journal of Geoscience and Environment Protection》 2020年第11期162-175,共14页
Tropical clay soil was compacted at different moisture conditions (dry, wet and optimum) and compactive efforts (Reduced proctor, Standard proctor, West African standard and Modified proctor). Experimental Soil-Water ... Tropical clay soil was compacted at different moisture conditions (dry, wet and optimum) and compactive efforts (Reduced proctor, Standard proctor, West African standard and Modified proctor). Experimental Soil-Water Characteristics (SWC) of the soil was derived using the pressure plate extractor equipment and SWC Curves (SWCC) plotted as gravimetric water content versus logarithm of matric suction. The Air Entry Values (A.E.V) obtained from experimental work ranged from 21 kPa to 59 kPa and compared favourably well with those estimated from predictive models with values of 23 kPa to 52 kPa. Specimens compacted with greater compactive effort (Modified proctor) and at optimum moisture content produced the largest air entry value of 59 kPa and reduced air voids. Changes observed in the shape of the SWCC were consistent with changes in pore size which occurred by varying compaction conditions. The shape of the soil-water characteristics curve was found to depend on the soil structure, compactive water content and compactive effort and not solely on the percentage of fine particles. 展开更多
关键词 soil-Water Characteristics tropical Clay soil Compaction Water Content Compactive Efforts soil-Water Characteristics Curve
下载PDF
Saturated anisotropic hydraulic conductivity of a compacted lateritic soil 被引量:2
7
作者 Roberto Aguiar dos Santos Edmundo Rogerio Esquivel 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期986-991,共6页
This study focuses on the saturated anisotropic hydraulic conductivity of a compacted lateritic clayey sandy soil. The effects of the molding water content and the confining stress on the anisotropic hydraulic conduct... This study focuses on the saturated anisotropic hydraulic conductivity of a compacted lateritic clayey sandy soil. The effects of the molding water content and the confining stress on the anisotropic hydraulic conductivity are investigated. The hydraulic conductivity is measured with a flexible-wall permeameter. Samples are dynamically compacted into the three compaction states of a standard Proctor compaction curve: the dry branch, optimum water content and wet branch. Depending on the molding water content and confining stress, the hydraulic conductivity may increase or decrease. In addition, the results indicate that, when the samples are compacted to the optimum water content, lower hydraulic conductivity is obtained, except at a confining stress equal to 50 kPa. The increase of the confining stress decreases the hydraulic conductivity for each of the evaluated compaction states. In the wet branch, horizontal hy- draulic conductivity is about 8 times higher than the vertical value. The anisotropic hydraulic conduc- tivities of the dry and wet branches decrease when the confining stress increases, and the opposite is observed in the optimum water content state. 展开更多
关键词 Hydraulic conductivity Anisotropic behavior Lateritic soil tropical soil Compacted soil
下载PDF
Soil erosion on the Brazilian sugarcane cropping system:An overview 被引量:2
8
作者 Edivaldo L.Thomaz Francieli S.Marcatto Valdemir Antoneli 《Geography and Sustainability》 2022年第2期129-138,共10页
Sugarcane(Saccharum officinarum)is an important crop for generating fiber,biofuel and other bioproducts.Brazil is the largest sugarcane producer in the world;however,limited knowledge is available with respect to soil... Sugarcane(Saccharum officinarum)is an important crop for generating fiber,biofuel and other bioproducts.Brazil is the largest sugarcane producer in the world;however,limited knowledge is available with respect to soil erosion in the sugarcane cropping system.This study reviews the soil erosion rates in sugarcane cropping and evaluates the effects of soil management and land conversion on soil erosion.Eighteen studies(using conventional tillage)reporting 43 outcomes of soil erosion rates were examined using the Scopus®database.Different methods were used to measure soil erosion yielded different soil loss rates;highest values were recorded in the natural rain method,i.e.,experimental plots with a median of 28 Mg ha^(−1)yr^(−1),were obtained followed by modeling with 9.3 Mg ha^(−1)yr^(−1)and simulated rain with 2 Mg ha^(−1)yr^(−1).The median soil loss using all data(n=43)obtained by the three methods was 7.2 Mg ha^(−1)yr^(−1).The soil type increases soil erosion;the sugarcane cropping system is practiced over the most erodible Brazilian soils(e.g.,Ultisols and Oxisols)where sand fraction is dominant,particularly fine sand.Most studies focused on rainsplash and interrill erosion.However,rill,ephemeral and permanent gullies should be examined,particularly in sugarcane-cropping areas. 展开更多
关键词 tropical soils soil erodibility Conservation agriculture soil security SUSTAINABILITY
下载PDF
Critical state model for structured soil
9
作者 Cristhian Mendoza Marcio Muniz de Farias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期630-641,共12页
Structure is an evident determinant for macroscopic behaviors of soils.However,this is not taken into account in most constitutive models,as structure is a rather complex issue in models.For this,it is important to de... Structure is an evident determinant for macroscopic behaviors of soils.However,this is not taken into account in most constitutive models,as structure is a rather complex issue in models.For this,it is important to develop and implement simple models that can reflect this important aspect of soil behavior.This paper tried to model structured soils based on well-established concepts,such as critical state and sub-loading.Critical state is the core of the classic Cam Clay model.The sub-loading concept implies adoption of an inner(sub-loading)yield surface,according to specific hardening rules for some internal strain-like state variables.Nakai and co-workers proposed such internal variables for controlling density(p)and structure(ω),using a modified stress space,called tij.Herein,similar variables are used in the context of the better-known invariants(p and q)of the Cam Clay model.This change requires explicit adoption of a non-associated flow rule for the sub-loading surface.This is accomplished by modifying the dilatancy ratio of the Cam Clay model,as a function of the new internal variables.These modifications are described and implemented under three-dimensional(3D)conditions.The model is then applied to simulating laboratory tests under different stress paths and the results are compared to experiments reported for different types of structured soils.The good agreements show the capacity and potential of the proposed model. 展开更多
关键词 Elastoplasticity Cam clay with sub-loading Structured soil tropical soil Non-associated flow rule
下载PDF
Effect of Applying Low Rates of Agricultural Lime and Chicken Manure on Selected Soil Properties on Ferralsols of Lake Victoria Agro-Ecological Zone, Uganda
10
作者 Freddie Kabango Byalebeka John +3 位作者 Semalulu Onesimus Andrew W. Lenssen Mwanjalolo Jackson Gilbert Majaliwa Kyebogola Stewart 《Journal of Agricultural Chemistry and Environment》 CAS 2022年第4期240-257,共17页
Ferralsols form a dominant type of soil on which most crops are grown in the Lake Victoria agro-ecological zone. Soil acidity has been recognized among the most important agricultural problems in such soils, which adv... Ferralsols form a dominant type of soil on which most crops are grown in the Lake Victoria agro-ecological zone. Soil acidity has been recognized among the most important agricultural problems in such soils, which adversely affect crop production and productivity. A study was conducted with the objective of determining the effect of applying low rates of lime and chicken manure on selected soil chemical properties. Using a Split Plot Factorial Randomized Complete Block Design, agricultural lime (0.0, 0.5, 1.0, 1.5 & 2.0 t&middot;ha<sup>-1</sup>) as the main plot and chicken manure (0.0, 1.0, 2.0 & 3.0 t&middot;ha<sup>-1</sup>) as sub-plot were applied, replicated three times. The test crop was common bean var. NABE 15. The experiment was conducted for three rainy seasons, two seasons on-station and one season on-farm on Ferralsol soil in the Lake Victoria crescent of central Uganda. The results showed that applying low rates of lime with chicken manure significantly (p &middot;ha<sup>-1</sup> lime was applied with the four chicken manure rates in Mukono. From the study, we recommend the application of small quantities of lime at 1.0 t&middot;ha<sup>-1</sup> with either 2.0 or 3.0 t&middot;ha<sup>-1</sup> chicken manure. 展开更多
关键词 Agricultural Lime Chicken Manure soil Acidity tropical soils
下载PDF
REGIONAL GEOCHEMISTRY OF RUBBER PLANTATION IN HAINAN ISLAND,CHINA
11
作者 Wang Jinghua 《Journal of Geographical Sciences》 SCIE CSCD 1990年第2期79-87,共9页
Hainan Island is located in the northern periphery of the tropical world.The environment is suitable for a number of tropical economic crops.The content of soil organic matter under rubber plantation is around 10- 20 ... Hainan Island is located in the northern periphery of the tropical world.The environment is suitable for a number of tropical economic crops.The content of soil organic matter under rubber plantation is around 10- 20 g kg-1.Cu,Zn,Mn,As,Mg,Ca and K in the soil profile reflect the parent material and the intensive weathering and leaching in the area.Copper has noticeably accumulated in the lower horizon,whereas the concentrations of Ca,Mg and K.in rubber trees are 0.5- 4.9,2.2- 4.3 and 4.6-10.2 g kg-1respectively.These three elements are mostly distributed in the plant roots and are particularly required during the development of new leaves early in the season. 展开更多
关键词 rubber plantation nutrient element tropical soil tropical vegetation
下载PDF
Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type 被引量:3
12
作者 Tatiana FRITTL Luiza CANISARES +3 位作者 Edvaldo SAGRILO Klaus BUTTERBACH-BAHL Michael DANNENMANN Carlos EPCERRI 《Pedosphere》 SCIE CAS CSCD 2020年第3期336-342,共7页
Biochar application has the potential to improve soil fertility and increase soil carbon stock, especially in tropical regions. Information on the temperature sensitivity of carbon dioxide(CO2) evolution from biochar-... Biochar application has the potential to improve soil fertility and increase soil carbon stock, especially in tropical regions. Information on the temperature sensitivity of carbon dioxide(CO2) evolution from biochar-amended soils at very high temperatures, as observed for tropical surface soils, is limited but urgently needed for the development of region-specific biochar management targeted to optimize biochar effects on soil functions. Here, we investigated the temperature sensitivity of soil respiration to the addition of different rates of Miscanthus biochar(0, 6.25, 12.5, and 25 Mg ha-1) in two types of soils with contrasting textures. Biochar-amended soil treatments and their controls were incubated at constant temperatures of 20, 30, and 40℃. Overall, our results show that: i) considering data from all treatments and temperatures, the addition of biochar decreased soil CO2 emissions when compared to untreated soils;ii) CO2 emissions from biochar-amended soils had a higher temperature sensitivity than those from biochar-free soils;iii) the temperature sensitivity of soil respiration in sandy soils was higher than that in clay soils;and iv) for clay soils, relative increases in soil CO2 emissions from biochar-amended soils were higher when the temperature increased from 30 to 40℃, while for sandy soils, the highest temperature responses of soil respiration were observed when increasing the temperature from 20 to 30℃. Together, these findings suggest a significantly reduced potential to increase soil organic carbon stocks when Miscanthus biochar is applied to tropical soils at high surface temperatures, which could be counteracted by the soil-and weather-specific timing of biochar application. 展开更多
关键词 carbon dioxide clay soil greenhouse gas emission Miscanthus biochar sandy soil tropical soil
原文传递
Soil Microbial Biomass After Three-Year Consecutive Composted Tannery Sludge Amendment
13
作者 M.D.M.SILVA M.BARAJAS-ACEVES +2 位作者 A.S.F.ARAúJO F.F.ARAúJO W.J.MELO 《Pedosphere》 SCIE CAS CSCD 2014年第4期469-475,共7页
Brazilian industry produces huge amounts of tannery sludge as residues,which is often disposed by landfilling or land application.However,consecutive amendment of such composted industrial wastes may cause shifts in s... Brazilian industry produces huge amounts of tannery sludge as residues,which is often disposed by landfilling or land application.However,consecutive amendment of such composted industrial wastes may cause shifts in soil microbial biomass(SMB) and enzyme activity.This study aimed to evaluate SMB and enzyme activity after 3-year consecutive composted tannery sludge(CTS) amendment in tropical sandy soils.Different amounts of CTS(0.0,2.5,5.0,10.0,and 20.0 t ha^(-1)) were applied to a sandy soil.The C and N contents of SMB,basal and substrate-induced respiration,respiratory quotient(qCO_2),and enzyme activities were determined in the soil samples collected after CTS amendment for 60 d at the third year.After 3 years,significant changes were found in soil microbial properties in response to different CTS amounts applied.The organic matter and Cr contents significantly increased with increasing CTS amounts.SMB and soil respiration peaked following amendment with 10.0 and 20.0 t ha-1 of CTS,respectively,while qCO_2was not significantly affected by CTS amendment.However,soil enzyme activity decreased significantly with increasing CTS amounts.Consecutive CTS amendment for 3 years showed inconsistent and contrasting effects on SMB and enzyme activities.The decrease in soil enzyme activities was proportional to a substantial increase in soil Cr concentration,with the latter exceeding the permitted concentrations by more than twofold.Thus,our results suggest that a maximum CTS quantity of 5.0 t ha^(-1) can be applied annually to tropical sandy soil,without causing potential risks to SMB and enzyme activity. 展开更多
关键词 Cr concentration enzyme activity industrial wastes soil microbial properties tropical soil
原文传递
Effect of calcium silicate on nutrient use of lowland rice and greenhouse gas emission from a paddy soil under alternating wetting and drying
14
作者 Hyun-Hwoi KU Keiichi HAYASHI +1 位作者 Ruth AGBISIT Gina VILLEGAS-PANGGA 《Pedosphere》 SCIE CAS CSCD 2020年第4期535-543,共9页
In intensively irrigated rice cultivation,plant-available silicon(Si)is a crucial nutrient for improving rice productivity.As a source of Si,calcium silicate(CaSiO3)was amended to evaluate the effect of silicate ferti... In intensively irrigated rice cultivation,plant-available silicon(Si)is a crucial nutrient for improving rice productivity.As a source of Si,calcium silicate(CaSiO3)was amended to evaluate the effect of silicate fertilizer on rice production,nitrogen(N)use efficiency,and greenhouse gas(GHG)emission under alternating wetting and drying in a pot experiment using a tropical soil from a paddy field of the International Rice Research Institute(IRRI)in the Philippines.Four levels of CaSiO3 amendment,0,112.7,224.5,and 445.8 kg ha^-1,with the recommended N rate were tested.The results showed that although CaSiO3amendment of 112.7 kg ha^-1resulted in higher rice straw,improved N use efficiency,and reduced N2O emission,there was no difference in grain yield among the four levels of CaSiO3 amendment owing to relatively lower harvest index.Moreover,CaSiO3 amendment showed a reverse trend between CH4 and N2O emissions as it reduced N2O emission while led to significantly increased CH4 emission and global warming potential.Thus,CaSiO3 amendment was a possible alternative to improve N use efficiency and increase rice straw biomass,but it needs to be reviewed in line with grain yield production and GHG emission.It is also imperative to test an optimal method of silicate fertilizer amendment in future research in order to compromise a negative impact in tropical soils. 展开更多
关键词 CH4 emission N use efficiency N2O emission plant-available Si rice straw biomass silicate fertilizer tropical soil
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部