期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
A predictive model for regional zenith tropospheric delay correction
1
作者 Yu Lei Danning Zhao 《Astronomical Techniques and Instruments》 CSCD 2024年第1期76-83,共8页
The conventional zenith tropospheric delay(ZTD)model(known as the Saastamoinen model)does not consider seasonal variations affecting the delay,giving it low accuracy and stability.This may be improved with adjustments... The conventional zenith tropospheric delay(ZTD)model(known as the Saastamoinen model)does not consider seasonal variations affecting the delay,giving it low accuracy and stability.This may be improved with adjustments to account for annual and semi-annual variations.This method uses ZTD data provided by the Global Geodetic Observing System to analyze seasonal variations in the bias of the Saastamoinen model in Asia,and then constructs a model with seasonal variation corrections,denoted as SSA.To overcome the dependence of the model on in-situ meteorological parameters,the SSA+GPT3 model is formed by combining the SSA and GPT3(global pressure-temperature)models.The results show that the introduction of annual and semi-annual variations can substantially improve the Saastamoinen model,yielding small and time-stable variations in bias and root mean square(RMS).In summer and autumn,the bias and RMS are noticeably smaller than those from the Saastamoinen model.In addition,the SSA model performs better in low-latitude and low-altitude areas,and bias and RMS decease with the increase of latitude or altitude.The prediction accuracy of the SSA model is also evaluated for external consistency.The results show that the accuracy of the SSA model(bias:-0.38 cm,RMS:4.43 cm)is better than that of the Saastamoinen model(bias:1.45 cm,RMS:5.16 cm).The proposed method has strong applicability and can therefore be used for predictive ZTD correction across Asia. 展开更多
关键词 Zenith tropospheric delay Saastamoinen model Seasonal variations Asian area Accuracy analysis
下载PDF
A zenith tropospheric delay correction model based on the regional CORS network 被引量:11
2
作者 Huang Liangke Liu Lilong Yao Chaolong 《Geodesy and Geodynamics》 2012年第4期53-62,共10页
Tropospheric delay is a primary error source in earth observations and a variety of radio navigation technologies. In this paper, the relationship between zenith tropospheric delays and the elevation and longitude of ... Tropospheric delay is a primary error source in earth observations and a variety of radio navigation technologies. In this paper, the relationship between zenith tropospheric delays and the elevation and longitude of stations is analyzed using the zenith tropospheric delay final products of International GNSS Service (IGS) stations from 2011. Two new models are proposed for estimating zenith tropospheric delays from regional CORS data without meteorological data. The proposed models are compared with the direct interpolation method and the remove-restore method using data from Guangxi CORS. The results show that the new models significantly improve the calculated precision. Finally, the root mean square (RMS) errors of the new models were used to estimate the surface precipitable water vapor (PWV) value at CORS station, which was determined to be less than 2 mm. 展开更多
关键词 regional CORS zenith tropospheric delay regional modeling new model precision analysis
下载PDF
Impact of Tropospheric Delay Gradients on Total Tropospheric Delay and Precise Point Positioning 被引量:1
3
作者 Mohamed Elsobeiey Mohamed El-Diasty 《International Journal of Geosciences》 2016年第5期645-654,共10页
GPS signals are electromagnetic waves that are affected by the Earth’s atmosphere. The Earth’s atmosphere can be categorized, according to its effect on GPS signals, into the ionosphere (ionospheric delay) and neutr... GPS signals are electromagnetic waves that are affected by the Earth’s atmosphere. The Earth’s atmosphere can be categorized, according to its effect on GPS signals, into the ionosphere (ionospheric delay) and neutral atmosphere (tropospheric delay). The first-order ionospheric delay can be eliminated by linear combination of GPS observables on different frequencies. However, tropospheric delay cannot be eliminated because it is frequency-independent. The total tropospheric delay can be divided into three components. The first is the dry component, the second part is the wet component, and the third part is the horizontal gradients which account for the azimuthal dependence of tropospheric delay. In this paper, the effect of modeling tropospheric gradients on the estimation of the total tropospheric delay and station position is investigated. Long session, one month during January 2015, of GPS data is collected from ten randomly selected globally distributed IGS stations. Two cases are studied: the first case, the coordinates of stations are kept fixed to their actual values and the tropospheric delay is estimated twice, with and without tropospheric gradients. In the second case, the station position is estimated along with the total tropospheric delay with and without tropospheric gradients. It is shown that the average bias of the estimated total tropospheric delay when neglecting tropospheric gradients ranges from ?1.72 mm to 2.14 mm while the average bias when estimating gradients are ?0.898 mm to 1.92 mm which means that the bias is reduced by about 30%. In addition, the average standard deviation of the bias is 4.26 mm compared with 4.52 mm which means that the standard deviation is improved by about 6%. 展开更多
关键词 Precise Point Positioning Electromagnetic Waves tropospheric delay tropospheric Gradients
下载PDF
Assessment of GNSS zenith tropospheric delay responses to atmospheric variables derived from ERA5 data over Nigeria
4
作者 Ifechukwu Ugochukwu Nzelibe Herbert Tata Timothy Oluwadare Idowu 《Satellite Navigation》 EI CSCD 2023年第1期167-182,I0005,共17页
Tropospheric delay is a major error caused by atmospheric refraction in Global Navigation Satellite System(GNSS)positioning.The study evaluates the potential of the European Centre for Medium-range Weather Forecast(EC... Tropospheric delay is a major error caused by atmospheric refraction in Global Navigation Satellite System(GNSS)positioning.The study evaluates the potential of the European Centre for Medium-range Weather Forecast(ECMWF)Reanalysis 5(ERA5)atmospheric variables in estimating the Zenith Tropospheric Delay(ZTD).Linear regression models(LRM)are applied to estimate ZTD with the ERA5 atmospheric variables.The ZTD are also estimated using standard ZTD models based on ERA5 and Global Pressure and Temperature 3(GPT3)atmospheric variables.These ZTD estimates are evaluated using the data collected from the permanent GNSS continuously operating reference stations in the Nigerian region.The results reveal that the Zenith Hydrostatic Delay(ZHD)from the LRM and the Saastamoinien model using ERA5 surface pressure are of identical accuracy,having a Root Mean Square(RMS)error of 2.3 mm while the GPT3-ZHD has an RMS of 3.4 mm.For the Zenith Wet Delay(ZWD)component,the best estimates are derived using ERA5 Precipitable Water Vapour(PWV).These include the ZWD derived by the LRM having an average RMS of 20.9 mm and Bevis equation having RMS of 21.1 mm and 21.0 mm for global and local weighted mean temperatures,respectively.The evaluation of GPT3-ZWD estimates gives RMS of 45.8 mm.This study has provided a valuable insight into the application of ERA5 data for ZTD estimation.In line with the fndings of the study,the ERA5 atmospheric variables are recommended for improving the accuracy in ZTD estimation,required for GNSS positioning. 展开更多
关键词 ECMWF reanalysis 5(ERA5) Global navigation satellite systems(GNSS) Global pressure and temperature 3(GPT3) Modelling NIGERIA Zenith tropospheric delay(ZTD)
原文传递
Refining the ERA5-based global model for vertical adjustment of zenith tropospheric delay 被引量:1
5
作者 Ge Zhu Liangke Huang +3 位作者 Yunzhen Yang Junyu Li Lv Zhou Lilong Liu 《Satellite Navigation》 2022年第3期221-230,I0005,共11页
Tropospheric delay is an important factor affecting high precision Global Navigation Satellite System(GNSS)positioning and also the basic data for GNSS atmospheric research.However,the existing tropospheric delay mode... Tropospheric delay is an important factor affecting high precision Global Navigation Satellite System(GNSS)positioning and also the basic data for GNSS atmospheric research.However,the existing tropospheric delay models have some problems,such as only a single function used for the entire atmosphere.In this paper,an ERA5-based(the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis)global model for vertical adjustment of Zenith Tropospheric Delay(ZTD)using a piecewise function is developed.The ZTD data at 611 radiosonde stations and the MERRA-2(second Modern-Era Retrospective analysis for Research and Applications)atmospheric reanalysis data were used to validate the model reliability.The Global Zenith Tropospheric Delay Piecewise(GZTD-P)model has excellent performance compared with the Global Pressure and Temperature(GPT3)model.Validated at radiosonde stations,the performance of the GZTD-P model was improved by 0.96 cm(23%)relative to the GPT3 model.Validated with MERRA-2 data,the quality of the GZTD-P model is improved by 1.8 cm(50%)compared to the GPT3 model,showing better accuracy and stability.The ZTD vertical adjustment model with different resolutions was established to enrich the model's applicability and speed up the process of tropospheric delay calculation.By providing model parameters with different resolutions,users can choose the appropriate model according to their applications. 展开更多
关键词 Piecewise function Vertical adjustment ZTD GNSS tropospheric delay
原文传递
Development and evaluation of the refined zenith tropospheric delay(ZTD)models 被引量:2
6
作者 Fei Yang Xiaolin Meng +2 位作者 Jiming Guo Debao Yuan Ming Chen 《Satellite Navigation》 2021年第1期296-304,共9页
The tropospheric delay is a significant error source in Global Navigation Satellite System(GNSS)positioning and navigation.It is usually projected into zenith direction by using a mapping function.It is particularly i... The tropospheric delay is a significant error source in Global Navigation Satellite System(GNSS)positioning and navigation.It is usually projected into zenith direction by using a mapping function.It is particularly important to establish a model that can provide stable and accurate Zenith Tropospheric Delay(ZTD).Because of the regional accuracy difference and poor stability of the traditional ZTD models,this paper proposed two methods to refine the Hopfield and Saastamoinen ZTD models.One is by adding annual and semi-annual periodic terms and the other is based on Back-Propagation Artificial Neutral Network(BP-ANN).Using 5-year data from 2011 to 2015 collected at 67 GNSS reference stations in China and its surrounding regions,the four refined models were constructed.The tropospheric products at these GNSS stations were derived from the site-wise Vienna Mapping Function 1(VMP1).The spatial analysis,temporal analysis,and residual distribution analysis for all the six models were conducted using the data from 2016 to 2017.The results show that the refined models can effectively improve the accuracy compared with the traditional models.For the Hopfield model,the improvement for the Root Mean Square Error(RMSE)and bias reached 24.5/49.7 and 34.0/52.8 mm,respectively.These values became 8.8/26.7 and 14.7/28.8 mm when the Saastamoinen model was refined using the two methods.This exploration is conducive to GNSS navigation and positioning and GNSS meteorology by providing more accurate tropospheric prior information. 展开更多
关键词 GNSS tropospheric delay ZTD Refined model ANN
原文传递
An ERA5 tropospheric parameters-augmented approach for improving GNSS precise point positioning
7
作者 Liangke Huang Feifan Liu +4 位作者 Lijie Guo Guiwen Lan Lv Zhou Cheng Wang Lilong Liu 《Geodesy and Geodynamics》 EI CSCD 2023年第5期467-476,共10页
Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric rean... Precise Point Positioning(PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring.As atmospheric reanalysis data products’ accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay(ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5(ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts(ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System(GNSS)PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service(IGS) stations for 2016-2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm,respectively. Further, GNSS observations for one week in each of the four seasons(spring: DOY 92-98;summer: DOY 199-205;autumn: DOY 275-281;and winter: DOY 22-28) from 34 multi-GNSS experiments(MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes(without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern(E) and Northern(N) directions, while the average convergence time over four weeks in the vertical(U)direction improved by 53.3% and 52.7%, respectively(in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively.Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning. 展开更多
关键词 Precise point positioning ERA5 atmospheric reanalysis data Multi-GNSS tropospheric delay
下载PDF
Numerical weather modeling-based slant tropospheric delay estimation and its enhancement by GNSS data
8
作者 Lei YANG Chris HILL Terry MOORE 《Geo-Spatial Information Science》 SCIE EI 2013年第3期186-200,共15页
Unmitigated tropospheric delay is one of the major error sources in precise point positioning(PPP).Precise Slant Tropospheric Delay(STD)estimation could help to provide cleaner observables for PPP,and improve its conv... Unmitigated tropospheric delay is one of the major error sources in precise point positioning(PPP).Precise Slant Tropospheric Delay(STD)estimation could help to provide cleaner observables for PPP,and improve its convergence,accuracy,and stability.STD is difficult to model accurately due to the rapid spatial and temporal variation of the water vapor in the troposphere.In the traditional approach,the STD is mapped from the zenith direction,which assumes a spherically symmetric local tropospheric profile and has limitations.In this paper,a new approach of directly estimating the STD from high resolution numerical weather modeling(NWM)products is introduced.This approach benefits from the best available meteorological information to improve real time STD estimation,with the RMS residual lower than 3.5 cm above 15°elevation,and 2 cm above 30°.Therefore,the new method can provide sufficient accuracy to improve PPP convergence time.To improve the performance of the new method in highly variable tropospheric conditions,a correction scheme is proposed which combines NWM information with multi-GNSS observations from a network of local continuously operating reference stations.It is demonstrated through a case study that this correction scheme is quite effective in reducing the STD estimation residuals and PPP convergence time. 展开更多
关键词 slant troposphere delay numerical weather modeling(NWM) precise point positioning(PPP) multi GNSS
原文传递
An initial investigation of the non-isotropic feature of GNSS tropospheric delay
9
作者 Ying Xu Zaozao Yang +1 位作者 Hongzhan Zhou Fangzhao Zhang 《Satellite Navigation》 SCIE EI 2024年第1期155-167,共13页
Tropospheric delay is a significant error source in Global Navigation Satellite Systems(GNSS)positioning.Slant Path Delay(SPD)is commonly derived by multiplying Zenith Tropospheric Delay(ZTD)with a mapping function.Ho... Tropospheric delay is a significant error source in Global Navigation Satellite Systems(GNSS)positioning.Slant Path Delay(SPD)is commonly derived by multiplying Zenith Tropospheric Delay(ZTD)with a mapping function.However,mapping functions,assuming atmospheric isotropy,restrict the accuracy of derived SPDs.To improve the accuracy,a horizontal gradient correction is introduced to account for azimuth-dependent SPD variations,treating the atmosphere as anisotropic.This study uncovers that,amidst atmospheric dynamics and spatiotemporal changes in moisture content,the SPD deviates from that based on traditional isotropy or anisotropy assumption.It innovatively introduces the concept that SPD exhibits non-isotropy with respect to azimuth angles.Hypothesis validation involves assessing SPD accuracy using three mapping functions at five International GNSS Service(IGS)stations,referencing the SPD with the ray-tracing method.It subsequently evaluates the SPD accuracy with horizontal gradient correction based on Vienna Mapping Function 3(VMF3)estimation.Lastly,the non-isotropic of SPD is analyzed through the ray-tracing method.The results indicate the smallest residual(1.1–82.7 mm)between the SPDs with VMF3 and those with the ray-tracing.However,introducing horizontal gradient correction yields no significant improvement of SPD accuracy.Considering potential decimeter-level differences in SPD due to non-isotropic tropospheric delay across azimuth angles,a precise grasp and summary of these variations is pivotal for accurate tropospheric delay modeling.This finding provides vital support for future high-precision tropospheric delay modeling. 展开更多
关键词 tropospheric delay GNSS Non-isotropy Mapping function Ray-tracing Horizontal gradient ERA5
原文传递
Research on Error Analysis and Correction Technique of Atmospheric Refraction for InSAR Measurement with Distributed Satellites 被引量:1
10
作者 Guojun Hu Li Zhang +2 位作者 Gang Li Hui Gong Jinchun Qin 《Journal of Computer and Communications》 2016年第15期142-150,共9页
SAR interferometry with distributed satellites is a technique based on the exploitation of the interference pattern of two SAR images acquired synchronously. The interferogram contains geometric, atmospheric, topograp... SAR interferometry with distributed satellites is a technique based on the exploitation of the interference pattern of two SAR images acquired synchronously. The interferogram contains geometric, atmospheric, topographic and land defomation. This paper focuses on atmospheric effects on SAR interferometry, which shows theoretically that the relationship among ionosphere TEC and troposphere parameters such as temperature, relative humitdity and pressure with respect to slant rang changes. An atmospheric correction method is given in the end. 展开更多
关键词 INSAR Atmospheric Refraction Troposphere delay Ionosphere delay Error Correction
下载PDF
GSTAR:an innovative software platform for processing space geodetic data at the observation level
11
作者 Chuang Shi Shiwei Guo +9 位作者 Lei Fan Shengfeng Gu Xinqi Fang Linghao Zhou Tao Zhang Zhen Li Min Li Wenwen Li Cheng Wang Yidong Lou 《Satellite Navigation》 SCIE EI CSCD 2023年第3期122-141,共20页
To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodeti... To meet the demands for the data combination with multiple space geodetic techniques at the observation level,we developed a new software platform with high extensibility and computation efficiency,named space Geodetic SpatioTemporal data Analysis and Research software(GSTAR).Most of the modules in the GSTAR are coded in C++with object-oriented programming.The layered modular theory is adopted for the design of the software,and the antenna-based data architecture is proposed for users to construct personalized geodetic application scenarios easily.The initial performance of the GSTAR software is evaluated by processing the Global Navigation Satellite System(GNSS)data collected from 315 globally distributed stations over two and a half years.The accuracy of GNSS-based geodetic products is evaluated by comparing them with those released by International GNSS Service(IGS)Analysis Centers(AC).Taking the products released by European Space Agency(ESA)as reference,the Three-Dimension(3D)Root-Mean-Squares(RMS)of the orbit differences are 2.7/6.7/3.3/7.7/21.0 cm and the STandard Deviations(STD)of the clock differences are 19/48/16/32/25 ps for Global Positioning System(GPS),GLObal NAvigation Satellite System(GLONASS),Galileo navigation satellite system(Galileo),BeiDou Navigation Satellite System(BDS),Medium Earth Orbit(MEO),and BDS Inclined Geo-Synchronous Orbit(IGSO)satellites,respectively.The mean values of the X and Y components of the polar coordinate and the Length of Day(LOD)with respect to the International Earth Rotation and Reference Systems Service(IERS)14 C04 products are-17.6 microarc-second(μas),9.2μas,and 14.0μs/d.Compared to the IGS daily solution,the RMSs of the site position differences in the north/east/up direction are 1.6/1.5/3.9,3.8/2.4/7.6,2.5/2.4/7.9 and 2.7/2.3/7.4 mm for GPS-only,GLONASS-only,Galileo-only,and BDS-only solution,respectively.The RMSs of the differences of the tropospheric Zenith Path Delay(ZPD),the north gradients,and the east gradients are 5.8,0.9,and 0.9 mm with respect to the IGS products.The X and Y components of the geocenter motion estimated from GPS-only,Galileo-only,and BDS-only observations well agree with IGS products,while the Z component values are much nosier where anomalous harmonics in GNSS draconitic year can be found.The accuracies of the above products calculated by the GSTAR are comparable with those from different IGS ACs.Compared to the precise scientific orbit products,the 3D RMS of the orbit differences for the two Gravity Recovery and Climate Experiment Follow-on(GRACE-FO)satellites is below 1.5 cm by conducting Precise Point Positioning with Ambiguity Resolution(PPP-AR).In addition,a series of rapid data processing algorithms are developed,and the operation speed of the GSTAR software is 5.6 times faster than that of the Positioning and Navigation Data Analyst(PANDA)software for the quad-system precise orbit determination procedure. 展开更多
关键词 GSTAR GNSS BDS LEO Precise orbit determination Precise clock estimation Earth rotation parameter tropospheric zenith path delay Geocenter motion Rapid data processing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部