Passenger car equivalent (PCE) is an important factor which is used to convert traffic volumes containing proportions of heavy good vehicles (HGVs) to a unify measure containing only passenger cars units (PCU). This p...Passenger car equivalent (PCE) is an important factor which is used to convert traffic volumes containing proportions of heavy good vehicles (HGVs) to a unify measure containing only passenger cars units (PCU). This paper uses large data base of real traffic raw data extracted from loop detector before being aggregated to estimate PCEs. These detectors are located on the M25 and the M42 motorway sites in the United Kingdom. The selected sites represent basic freeway segments as they are far away from the influence of entrance (on ramp) and exit (off ramp) sections. The data are filtered properly so as to estimate passenger car equivalents (PCEs) using lagging headway method for close following situations at different speed ranges. The results suggest that for the same location, the equivalency factors are varies significantly based traffic speed. However, it is proved that such variation with traffic speed is influenced by the differences in lengths between HGVs and cars. Regression models have also been developed linking the PCEs with traffic speed.展开更多
Purpose: Rear-end crashes attribute to a large portion of total crashes in China, which lead to many casualties and property damage, especially when involving commercial vehicles. This paper aims to investigate the c...Purpose: Rear-end crashes attribute to a large portion of total crashes in China, which lead to many casualties and property damage, especially when involving commercial vehicles. This paper aims to investigate the critical factors for occupant injury severity in the specific rear-end crash type involving trucks as the front vehicle (W). Methods: This paper investigated crashes occurred from 2011 to 2013 in Beijing area, China and selected 100 qualified cases i.e., rear-end crashes involving trucks as the FV. The crash data were supplemented with interviews from police officers and vehicle inspection. A binary logistic regression model was used to build the relationship between occupant injury severity and corresponding affecting factors. More- over, a multinomial logistic model was used to predict the likelihood of fatal or severe injury or no injury in a rear-end crash. Results: The results provided insights on the characteristics of driver, vehicle and environment, and the corresponding influences on the likelihood of a rear-end crash. The binary logistic model showed that drivers' age, weight difference between vehicles, visibility condition and lane number of road signifi- cantly increased the likelihood for severe injury of rear-end crash. The multinomial logistic model and the average direct pseudo-elasticity of variables showed that night time, weekdays, drivers from other provinces and passenger vehicles as rear vehicles significantly increased the likelihood of rear drivers being fatal. Conclusion: All the abovementioned significant factors should be improved, such as the conditions of lighting and the layout of lanes on roads. Two of the most common driver factors are drivers' age and drivers' original residence. Young drivers and outsiders have a higher injury severity. Therefore it is imperative to enhance the safety education and management on the young drivers who steer heavy duty truck from other cities to Beiiing on weekdays.展开更多
文摘Passenger car equivalent (PCE) is an important factor which is used to convert traffic volumes containing proportions of heavy good vehicles (HGVs) to a unify measure containing only passenger cars units (PCU). This paper uses large data base of real traffic raw data extracted from loop detector before being aggregated to estimate PCEs. These detectors are located on the M25 and the M42 motorway sites in the United Kingdom. The selected sites represent basic freeway segments as they are far away from the influence of entrance (on ramp) and exit (off ramp) sections. The data are filtered properly so as to estimate passenger car equivalents (PCEs) using lagging headway method for close following situations at different speed ranges. The results suggest that for the same location, the equivalency factors are varies significantly based traffic speed. However, it is proved that such variation with traffic speed is influenced by the differences in lengths between HGVs and cars. Regression models have also been developed linking the PCEs with traffic speed.
文摘Purpose: Rear-end crashes attribute to a large portion of total crashes in China, which lead to many casualties and property damage, especially when involving commercial vehicles. This paper aims to investigate the critical factors for occupant injury severity in the specific rear-end crash type involving trucks as the front vehicle (W). Methods: This paper investigated crashes occurred from 2011 to 2013 in Beijing area, China and selected 100 qualified cases i.e., rear-end crashes involving trucks as the FV. The crash data were supplemented with interviews from police officers and vehicle inspection. A binary logistic regression model was used to build the relationship between occupant injury severity and corresponding affecting factors. More- over, a multinomial logistic model was used to predict the likelihood of fatal or severe injury or no injury in a rear-end crash. Results: The results provided insights on the characteristics of driver, vehicle and environment, and the corresponding influences on the likelihood of a rear-end crash. The binary logistic model showed that drivers' age, weight difference between vehicles, visibility condition and lane number of road signifi- cantly increased the likelihood for severe injury of rear-end crash. The multinomial logistic model and the average direct pseudo-elasticity of variables showed that night time, weekdays, drivers from other provinces and passenger vehicles as rear vehicles significantly increased the likelihood of rear drivers being fatal. Conclusion: All the abovementioned significant factors should be improved, such as the conditions of lighting and the layout of lanes on roads. Two of the most common driver factors are drivers' age and drivers' original residence. Young drivers and outsiders have a higher injury severity. Therefore it is imperative to enhance the safety education and management on the young drivers who steer heavy duty truck from other cities to Beiiing on weekdays.