To model a true three-dimensional(3D)display system,we introduced the method of voxel molding to obtain the stereoscopic imaging space of the system.For the distribution of each voxel,we proposed a four-dimensional(4D...To model a true three-dimensional(3D)display system,we introduced the method of voxel molding to obtain the stereoscopic imaging space of the system.For the distribution of each voxel,we proposed a four-dimensional(4D)Givone–Roessor(GR)model for state-space representation—that is,we established a local state-space model with the 3D position and one-dimensional time coordi-nates to describe the system.First,we extended the original elementary operation approach to a 4D condition and proposed the implementation steps of the realiza-tion matrix of the 4D GR model.Then,we described the working process of a true 3D display system,analyzed its real-time performance,introduced the fixed-point quantization model to simplify the system matrix,and derived the conditions for the global asymptotic stability of the system after quantization.Finally,we provided an example to prove the true 3D display system’s feasibility by simulation.The GR-model-representation method and its implementation steps proposed in this paper simplified the system’s mathematical expression and facilitated the microcon-troller software implementation.Real-time and stability analyses can be used widely to analyze and design true 3D display systems.展开更多
To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with ...To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.展开更多
Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagati...Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagation of a single crack,it can be extended to microcrack cluster so as to reflect the macroscopic failure characteristic.Besides,it can be derived as HoekeBrown criterion when the intermediate principal stress σ_(2) is equal to the minimum principal stress σ_(3)(Zuo et al.,2015).In addition,the opening direction of the microcrack cluster decreases with the increase of the intermediate principal stress coefficient,which could be described by an empirical function and verified by 10 kinds of hard rocks.Rock strength is influenced by the coupled effect of stress level and the opening direction of the microcrack clusters related to the stress level.As the effects of these two factors on the strength are opposite,the intermediate principal stress effect is induced.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
Freak waves are commonly characterized by strong-nonlinearity, and the wave steepness, which is calculated from the wavelength, is a measure of the degree of the wave nonlinearity. Moreover, the wavelength can describ...Freak waves are commonly characterized by strong-nonlinearity, and the wave steepness, which is calculated from the wavelength, is a measure of the degree of the wave nonlinearity. Moreover, the wavelength can describe the locally spatial characteristics of freak waves. Generally, the wavelengths of freak waves are estimated from the dispersion relations of Stokes waves. This paper concerns whether this approach enables a consistent estimate of the wavelength of freak waves. The two-(unidirectional, long-crested) and three-dimensional(multidirectional, shortcrested) freak waves are simulated experimentally through the dispersive and directional focusing of component waves, and the wavelengths obtained from the surface elevations measured by the wave gauge array are compared with the results from the linear, 3rd-order and 5th-order Stokes wave theories. The comparison results suggest that the 3rd-order theory estimates the wavelengths of freak waves with higher accuracy than the linear and 5th-order theories. Furthermore, the results allow insights into the dominant factors. It is particularly noteworthy that the accuracy is likely to depend on the wave period, and that the wavelengths of longer period freak waves are overestimated but the wavelengths are underestimated for shorter period ones. In order to decrease the deviation, a modified formulation is presented to predict the wavelengths of two-and three-dimensional freak waves more accurately than the 3rd-order dispersion relation, by regression analysis. The normalized differences between the predicted and experimental results are over 50% smaller for the modified model suggested in this study compared with the 3rd-order dispersion relation.展开更多
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the...The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.展开更多
Aspan of twenty-five years,for a company,constitutes a engthy and eventful journey.Twenty-five years ago,a group of oil professionals from the Bureau of Geophysical Prospecting INC (hereinafter referred to as BGP),set...Aspan of twenty-five years,for a company,constitutes a engthy and eventful journey.Twenty-five years ago,a group of oil professionals from the Bureau of Geophysical Prospecting INC (hereinafter referred to as BGP),set foot on the land of Nigeria and embarked on a legendary journey.This is a narrative of resilience,commitment,and heartfelt passion,an inspiring saga that touches the soul.展开更多
For all its different forms,democracy is expected to promote people’s well-being,instead of being weaponized to justify hegemony,as democracy is also a principle of global governance.
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ...The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects.展开更多
China and Malaysia established diplomatic ties fifty years ago.Over the past half-century,the bilateral relationship has made great progress in various fields,delivering tangible benefits to the people of the two coun...China and Malaysia established diplomatic ties fifty years ago.Over the past half-century,the bilateral relationship has made great progress in various fields,delivering tangible benefits to the people of the two countries and making positive contributions to the peace,stability,and prosperity of the region.展开更多
The smooth convex generalized failure function, which represents 1/6 part of envelope in tile deviatoric plane, is proposed. The proposed function relies on four shape parameters (L, a, b and c), in which two parame...The smooth convex generalized failure function, which represents 1/6 part of envelope in tile deviatoric plane, is proposed. The proposed function relies on four shape parameters (L, a, b and c), in which two parameters (a and b) are dependent on the others. The parameter Ls is called extension ratio. The proposed failure function could be incorporated with any two-dimensional (2D) failure criteria to make it a three-dimensional (3D) version. In this paper, a mathematical formulation for incorporation of Hoek-Brown failure criterion with the proposed function is presented. The Hoek-Brown failure criterion is the most suited 2D failure criterion tbr geomaterials. Two types of analyses for best-fitting solution of published true tri-axial test data were made by considering (1) constant extension ratio and (2) variable extension ratio. The shape and strength parameters for different types of rocks have been determined by best-fitting the published true tri-axial test data for both the analyses. It is observed from the best-fitting solution by considering uniform extension ratio (L~) that shape constants have a correlation with Hoek-Brown strength parameters. Thus, only two parameters (c~. and m) are needed for representing the 3D failure criterion for intact rock. The statistical expression between shape and Hoek-Brown strength parameters is given. In the second analysis, when considering varying extension ratio, another parameterfis introduced. The modified extension ratio is related tofand extension ratio. The results at minimum mean misfit for all the nine rocks indicate that the range off varies from 0.7 to 1.0. It is found that mean misfit by considering varying extension ratio is lower than that in the first analysis. But it requires three parameters. A statistical expression betweenfand Hoek-Brown strength parameters has been established. Though coefficient of correlation is not reasonable, we may eliminate it as an extra parameter. At the end of the paper, a methodology has also been given for its application to isotropic jointed rock mass, so that it can be implemented in a numerical code for stability analysis of jointed rock mass structures.展开更多
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water qu...The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.展开更多
An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of norm...An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions.展开更多
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim...The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.展开更多
To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior u...To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.展开更多
This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) ...This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynami...The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane(LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group(n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method(4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume(P〈0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated(P〈0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group(P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group(P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group(P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant(P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group(P=0.031). The a RVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group(P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.展开更多
基金This work was supported by the Key Research and Development Projects of Science and Technology Development Plan of Jilin Provincial Department of Science and Technology(20180201090gx).
文摘To model a true three-dimensional(3D)display system,we introduced the method of voxel molding to obtain the stereoscopic imaging space of the system.For the distribution of each voxel,we proposed a four-dimensional(4D)Givone–Roessor(GR)model for state-space representation—that is,we established a local state-space model with the 3D position and one-dimensional time coordi-nates to describe the system.First,we extended the original elementary operation approach to a 4D condition and proposed the implementation steps of the realiza-tion matrix of the 4D GR model.Then,we described the working process of a true 3D display system,analyzed its real-time performance,introduced the fixed-point quantization model to simplify the system matrix,and derived the conditions for the global asymptotic stability of the system after quantization.Finally,we provided an example to prove the true 3D display system’s feasibility by simulation.The GR-model-representation method and its implementation steps proposed in this paper simplified the system’s mathematical expression and facilitated the microcon-troller software implementation.Real-time and stability analyses can be used widely to analyze and design true 3D display systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.51934003,52334004)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050014)。
文摘To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions.
基金the National Natural Science Foundation of China(Grant No.52225404)Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911413037).
文摘Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagation of a single crack,it can be extended to microcrack cluster so as to reflect the macroscopic failure characteristic.Besides,it can be derived as HoekeBrown criterion when the intermediate principal stress σ_(2) is equal to the minimum principal stress σ_(3)(Zuo et al.,2015).In addition,the opening direction of the microcrack cluster decreases with the increase of the intermediate principal stress coefficient,which could be described by an empirical function and verified by 10 kinds of hard rocks.Rock strength is influenced by the coupled effect of stress level and the opening direction of the microcrack clusters related to the stress level.As the effects of these two factors on the strength are opposite,the intermediate principal stress effect is induced.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51509120 and 52171260)the Basic Funding of the Central Public Research Institutes (Grant No.TKS20200317)。
文摘Freak waves are commonly characterized by strong-nonlinearity, and the wave steepness, which is calculated from the wavelength, is a measure of the degree of the wave nonlinearity. Moreover, the wavelength can describe the locally spatial characteristics of freak waves. Generally, the wavelengths of freak waves are estimated from the dispersion relations of Stokes waves. This paper concerns whether this approach enables a consistent estimate of the wavelength of freak waves. The two-(unidirectional, long-crested) and three-dimensional(multidirectional, shortcrested) freak waves are simulated experimentally through the dispersive and directional focusing of component waves, and the wavelengths obtained from the surface elevations measured by the wave gauge array are compared with the results from the linear, 3rd-order and 5th-order Stokes wave theories. The comparison results suggest that the 3rd-order theory estimates the wavelengths of freak waves with higher accuracy than the linear and 5th-order theories. Furthermore, the results allow insights into the dominant factors. It is particularly noteworthy that the accuracy is likely to depend on the wave period, and that the wavelengths of longer period freak waves are overestimated but the wavelengths are underestimated for shorter period ones. In order to decrease the deviation, a modified formulation is presented to predict the wavelengths of two-and three-dimensional freak waves more accurately than the 3rd-order dispersion relation, by regression analysis. The normalized differences between the predicted and experimental results are over 50% smaller for the modified model suggested in this study compared with the 3rd-order dispersion relation.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202)。
文摘The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.
文摘Aspan of twenty-five years,for a company,constitutes a engthy and eventful journey.Twenty-five years ago,a group of oil professionals from the Bureau of Geophysical Prospecting INC (hereinafter referred to as BGP),set foot on the land of Nigeria and embarked on a legendary journey.This is a narrative of resilience,commitment,and heartfelt passion,an inspiring saga that touches the soul.
文摘For all its different forms,democracy is expected to promote people’s well-being,instead of being weaponized to justify hegemony,as democracy is also a principle of global governance.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
基金This work was supported by Natural Science Foundation of China(Grant No.52278333)the Fundamental Research Funds for the Central Universities(Grant No.N2101021)The work is under the framework of the 111 Project(Grant No.B17009)and Sino-Franco Joint Research Laboratory on Multiphysics and Multiscale Rock Mechanics.
文摘The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects.
文摘China and Malaysia established diplomatic ties fifty years ago.Over the past half-century,the bilateral relationship has made great progress in various fields,delivering tangible benefits to the people of the two countries and making positive contributions to the peace,stability,and prosperity of the region.
基金the Department of Science and Technology, India, fast track project scheme(SR/FTP/ETA-17-2007)
文摘The smooth convex generalized failure function, which represents 1/6 part of envelope in tile deviatoric plane, is proposed. The proposed function relies on four shape parameters (L, a, b and c), in which two parameters (a and b) are dependent on the others. The parameter Ls is called extension ratio. The proposed failure function could be incorporated with any two-dimensional (2D) failure criteria to make it a three-dimensional (3D) version. In this paper, a mathematical formulation for incorporation of Hoek-Brown failure criterion with the proposed function is presented. The Hoek-Brown failure criterion is the most suited 2D failure criterion tbr geomaterials. Two types of analyses for best-fitting solution of published true tri-axial test data were made by considering (1) constant extension ratio and (2) variable extension ratio. The shape and strength parameters for different types of rocks have been determined by best-fitting the published true tri-axial test data for both the analyses. It is observed from the best-fitting solution by considering uniform extension ratio (L~) that shape constants have a correlation with Hoek-Brown strength parameters. Thus, only two parameters (c~. and m) are needed for representing the 3D failure criterion for intact rock. The statistical expression between shape and Hoek-Brown strength parameters is given. In the second analysis, when considering varying extension ratio, another parameterfis introduced. The modified extension ratio is related tofand extension ratio. The results at minimum mean misfit for all the nine rocks indicate that the range off varies from 0.7 to 1.0. It is found that mean misfit by considering varying extension ratio is lower than that in the first analysis. But it requires three parameters. A statistical expression betweenfand Hoek-Brown strength parameters has been established. Though coefficient of correlation is not reasonable, we may eliminate it as an extra parameter. At the end of the paper, a methodology has also been given for its application to isotropic jointed rock mass, so that it can be implemented in a numerical code for stability analysis of jointed rock mass structures.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
基金The project is supported by The National Natural Science Foundation of China
文摘The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.
文摘An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions.
基金supported by the Joint Fund of Seismological Science(Grant No.U1839206)the National R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant No.2017YFC1500301)+2 种基金supported by IGGCAS Research Start-up Funds(Grant No.E0515402)National Natural Science Foundation of China(Grant No.E1115401)supported by National Natural Science Foundation of China(Grant No.11971258).
文摘The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.
基金supported by the National Natural Science Foundation of China (51075147)
文摘To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.
文摘This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane(LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group(n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method(4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume(P〈0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated(P〈0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group(P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group(P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group(P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant(P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group(P=0.031). The a RVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group(P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.