期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于TLP经验模型的本体学习算法 被引量:1
1
作者 何国英 高炜 《大理学院学报(综合版)》 CAS 2014年第12期11-14,共4页
将TLP和本体回归算法相融合,提出基于TLP经验模型的本体相似度计算和本体映射算法。新算法继承了TCP的特点,使其具有无偏参数估计的特征。将新算法应用于GO本体和物理教育本体,通过实验结果表明新算法对特定的应用领域具有较高的效率。
关键词 本体 相似度计算 本体映射 融合惩罚 缩减lasso惩罚
下载PDF
Single-Index Quantile Regression with Left Truncated Data
2
作者 XU Hongxia FAN Guoliang LI Jinchang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第5期1963-1987,共25页
The purpose of this paper is two fold.First,the authors investigate quantile regression(QR)estimation for single-index QR models when the response is subject to random left truncation.The random weights are introduced... The purpose of this paper is two fold.First,the authors investigate quantile regression(QR)estimation for single-index QR models when the response is subject to random left truncation.The random weights are introduced to deal with left truncated data and the associated iteration estimation method is proposed.The asymptotic properties for the proposed QR estimates of the index parameter and unknown link function are both obtained.Further,by combining the QR loss function and the adaptive LASSO penalization,a variable selection procedure for the index parameter is introduced and its oracle property is established.Second,a weighted empirical log-likelihood ratio of the index parameter based on the QR method is introduced and is proved to be asymptotic standard chi-square distribution.Furthermore,confidence regions of the index parameter can be constructed.The finite sample performance of the proposed methods are demonstrated.A real data analysis is also conducted to show the usefulness of the proposed approaches. 展开更多
关键词 Adaptive lasso penalty left truncated data quantile regression single-index model variable selection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部