In this study,the first-order shear deformation theory(FSDT)is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC).The vi...In this study,the first-order shear deformation theory(FSDT)is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC).The vibration analyses of the FG-GPLRC truncated conical shell are presented.Considering the graphene platelets(GPLs)of the FG-GPLRC truncated conical shell with three different distribution patterns,the modified Halpin-Tsai model is used to calculate the effective Young’s modulus.Hamilton’s principle,the FSDT,and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell.The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell.Then,the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method.The effects of the weight fraction and distribution pattern of the GPLs,the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed.This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.展开更多
Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which ...An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.展开更多
In this study,the effects of elastic foundations(EFs)and carbon nanotube(CNT)reinforcement on the hydrostatic buckling pressure(HBP)of truncated conical shells(TCSs)are investigated.The first order shear deformation t...In this study,the effects of elastic foundations(EFs)and carbon nanotube(CNT)reinforcement on the hydrostatic buckling pressure(HBP)of truncated conical shells(TCSs)are investigated.The first order shear deformation theory(FOSDT)is generalized to the buckling problem of TCSs reinforced with CNTs resting on the EFs for the first time.The material properties of composite TCSs reinforced with CNTs are graded linearly according to the thickness coordinate.The Winkler elastic foundation(W-EF)and Pasternak elastic foundation(P-EF)are considered as the EF.The basic relations and equations of TCSs reinforced with CNTs on the EFs are obtained in the framework of the FOSDT and solved using the Galerkin method.One of the innovations in this study is to obtain a closed-form solution for the HBP of TCSs reinforced with CNTs on the EFs.Finally,the effects of the EFs and various types CNT reinforcements on the HBP are investigated simultaneously.The obtained results are compared with the results in the literature,and the accuracy of results is confirmed.展开更多
The size-dependent geometrically nonlinear harmonically soft excited oscillation of composite truncated conical microshells(CTCMs)made of functionally graded materials(FGMs)integrated with magnetostrictive layers is a...The size-dependent geometrically nonlinear harmonically soft excited oscillation of composite truncated conical microshells(CTCMs)made of functionally graded materials(FGMs)integrated with magnetostrictive layers is analyzed.It is supposed that the FGM CTCMs are subjected to mechanical soft excitations together with external magnetic fields.An analytical framework is created by a microstructuredependent shell model having the 3rd-order distribution of shear deformation based on the modified couple stress(MCS)continuum elasticity.With the aid of the discretized form of differential operators developed via the generalized differential quadrature technique,a numerical solution methodology is introduced for obtaining the couple stress-based amplitude and frequency responses related to the primary resonant dynamics of the FGM CTCMs.Jump phenomena due to the loss of the first stability branch and falling down to the lower stable branch can be seen in the nonlinear primary resonance of the FGM CTCMs.It is demonstrated that the hardening type of nonlinearity results in bending the frequency response to the right side,and the MCS type of size effect weakens this pattern.Moreover,for higher material gradient indexes,the hardening type of nonlinearity is enhanced,and the MCS-based frequency response bends more considerably to the right side.展开更多
In this article,an analytical method is proposed to analyze of the linear buckling behavior of the FG porous truncated conical shells subjected to a uniform axial compressive load and resting on the Pasternak elastic ...In this article,an analytical method is proposed to analyze of the linear buckling behavior of the FG porous truncated conical shells subjected to a uniform axial compressive load and resting on the Pasternak elastic foundation.The material properties including Young’s modulus,shear modulus and density are assumed to vary in the thickness direction.Three types of FG porous distributions including symmetric porosity distribution,non-symmetric porosity and uniform porosity distribution are considered.The governing equations of the FG porous truncated conical shells are obtained by using the first-order shear deformation theory(FSDT).With the help of the Galerkin method,the expressions for critical buckling loads are obtained in closed forms.The reliability of the obtained results is verified by comparing the present solutions with the published solutions.Finally,the numerical results show the effects of shell characteristics,porosity distribution,porosity coefficient,and elastic foundation on the critical buckling load.展开更多
The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by mea...The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12002057,11872127,11832002)the Scientific Research Project of Beijing Educational Committee(No.KM202111232023)the Qin Xin Talents Cultivation Program,Beijing Information Science&Technology University(Nos.QXTCP C202102,A201901)。
文摘In this study,the first-order shear deformation theory(FSDT)is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC).The vibration analyses of the FG-GPLRC truncated conical shell are presented.Considering the graphene platelets(GPLs)of the FG-GPLRC truncated conical shell with three different distribution patterns,the modified Halpin-Tsai model is used to calculate the effective Young’s modulus.Hamilton’s principle,the FSDT,and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell.The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell.Then,the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method.The effects of the weight fraction and distribution pattern of the GPLs,the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed.This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.
基金supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.
文摘In this study,the effects of elastic foundations(EFs)and carbon nanotube(CNT)reinforcement on the hydrostatic buckling pressure(HBP)of truncated conical shells(TCSs)are investigated.The first order shear deformation theory(FOSDT)is generalized to the buckling problem of TCSs reinforced with CNTs resting on the EFs for the first time.The material properties of composite TCSs reinforced with CNTs are graded linearly according to the thickness coordinate.The Winkler elastic foundation(W-EF)and Pasternak elastic foundation(P-EF)are considered as the EF.The basic relations and equations of TCSs reinforced with CNTs on the EFs are obtained in the framework of the FOSDT and solved using the Galerkin method.One of the innovations in this study is to obtain a closed-form solution for the HBP of TCSs reinforced with CNTs on the EFs.Finally,the effects of the EFs and various types CNT reinforcements on the HBP are investigated simultaneously.The obtained results are compared with the results in the literature,and the accuracy of results is confirmed.
文摘The size-dependent geometrically nonlinear harmonically soft excited oscillation of composite truncated conical microshells(CTCMs)made of functionally graded materials(FGMs)integrated with magnetostrictive layers is analyzed.It is supposed that the FGM CTCMs are subjected to mechanical soft excitations together with external magnetic fields.An analytical framework is created by a microstructuredependent shell model having the 3rd-order distribution of shear deformation based on the modified couple stress(MCS)continuum elasticity.With the aid of the discretized form of differential operators developed via the generalized differential quadrature technique,a numerical solution methodology is introduced for obtaining the couple stress-based amplitude and frequency responses related to the primary resonant dynamics of the FGM CTCMs.Jump phenomena due to the loss of the first stability branch and falling down to the lower stable branch can be seen in the nonlinear primary resonance of the FGM CTCMs.It is demonstrated that the hardening type of nonlinearity results in bending the frequency response to the right side,and the MCS type of size effect weakens this pattern.Moreover,for higher material gradient indexes,the hardening type of nonlinearity is enhanced,and the MCS-based frequency response bends more considerably to the right side.
基金Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 107.02-2018.324.
文摘In this article,an analytical method is proposed to analyze of the linear buckling behavior of the FG porous truncated conical shells subjected to a uniform axial compressive load and resting on the Pasternak elastic foundation.The material properties including Young’s modulus,shear modulus and density are assumed to vary in the thickness direction.Three types of FG porous distributions including symmetric porosity distribution,non-symmetric porosity and uniform porosity distribution are considered.The governing equations of the FG porous truncated conical shells are obtained by using the first-order shear deformation theory(FSDT).With the help of the Galerkin method,the expressions for critical buckling loads are obtained in closed forms.The reliability of the obtained results is verified by comparing the present solutions with the published solutions.Finally,the numerical results show the effects of shell characteristics,porosity distribution,porosity coefficient,and elastic foundation on the critical buckling load.
文摘The theory of nonlinear stability for a truncated shallow conical shell with variable thickness under the action of uniform pressure was presented. The fundamental equations and boundary conditions were derived by means of calculus of variations. An analytic solution for the critical buckling pressure of the shell with a hyperbolically varying thickness is obtained by use of modified iteration method. The results of numerical calculations are presented in diagrams, which show the influence of geometrical and physical parameters on the buckling behavior.