With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring syst...With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.展开更多
At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compa...At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.展开更多
Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas (FLNG) system is investigated. Hydrodynamic modeling of a turret-moored FLNG system, in consideration of the coupling effects of...Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas (FLNG) system is investigated. Hydrodynamic modeling of a turret-moored FLNG system, in consideration of the coupling effects of the vessel and its mooring lines, has been addressed in details. Based on the boundary element method, a 3-D panel model of the FLNG vessel and the related free water surface model are established, and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated. A systematic model test program consisting of the white noise wave test, offset test and irregular wave test combined with current and wind, etc. is performed to verify the numerical model. Owing to the depth limit of the water basin, the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system. The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests. The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51379095)
文摘With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.
基金Supported by the National Natural Science Foundation of China (Grant No. 10602055)Natural Science Foundation of Zhejiang Province (Grant No. Y6110243)
文摘At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.
基金supported by the Science Foundation of the Science and Technology Commission of Shanghai Municipality(Grant No. 11ZR1417800)the National Natural Science Foundation of China (Grant No. 50879045)
文摘Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas (FLNG) system is investigated. Hydrodynamic modeling of a turret-moored FLNG system, in consideration of the coupling effects of the vessel and its mooring lines, has been addressed in details. Based on the boundary element method, a 3-D panel model of the FLNG vessel and the related free water surface model are established, and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated. A systematic model test program consisting of the white noise wave test, offset test and irregular wave test combined with current and wind, etc. is performed to verify the numerical model. Owing to the depth limit of the water basin, the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system. The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests. The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.