The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is fo...The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is formulated as a Riemannian optimiza-tion problem on a product of two complex Stiefel manifolds,a practical algorithm based on the generic Riemannian trust-region method of Absil et al.is presented to solve the underlying problem,which enjoys the global convergence and local superlinear conver-gence rate.Numerical experiments are provided to illustrate the efficiency of the proposed method.Comparisons with some classical Riemannian gradient-type methods,the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt and the Riemannian manifold optimization library ROPTLIB,and some latest infeasible methods for solving manifold optimization problems,are also provided to show the merits of the proposed approach.展开更多
目前,传统雷达成像方法的发展日渐完善,但在前视成像场景下,雷达难以获取方位向上的多普勒信息,从而限制了其方位向分辨率。为了解决这一问题,国内提出了微波关联成像方法。微波关联成像方法利用关联成像原理进行雷达成像,无需利用目标...目前,传统雷达成像方法的发展日渐完善,但在前视成像场景下,雷达难以获取方位向上的多普勒信息,从而限制了其方位向分辨率。为了解决这一问题,国内提出了微波关联成像方法。微波关联成像方法利用关联成像原理进行雷达成像,无需利用目标的多普勒信息即可实现高分辨率成像。这一新型雷达成像方法突破了传统雷达成像方法中受限于雷达孔径的分辨率,具有极高的前视成像发展潜力。目前,国内外对微波关联成像的研究主要集中在产生随机波前、解决模型失配问题和研制超材料孔径等方面,但对关键的关联过程的优化主要集中在压缩感知和深度学习方面,而在伪逆算法方面的研究相对较少。因此,为了进一步完善微波关联成像体系,本文提出了一种新的针对伪逆算法优化的微波关联前视成像方法。本文结合截断奇异值分解(Truncated Singular Value Decomposition,TSVD)处理和吉洪诺夫正则化(Tikhonov)提出了奇异值分解和吉洪诺夫正则化的联合处理方法(TSVD-Tikhonov,TSVDT),通过TSVDT方法对时空随机辐射阵进行处理,然后进行压缩关联成像。同时,本文比较了广义交叉验证(Generalized Cross-Validation,GCV)和L曲线法,并证明了在微波关联成像方法中,利用GCV法选择截断参数的运算耗时更短且更稳定。最后,利用微波暗室实验验证了该方法在低信噪比条件下提高了成像的抗干扰能力,并且仍能保持较快的运算速度。展开更多
The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the ex...The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises.This paper proposes a novel inversion algorithmto accelerate the convergence and enhance the precision using empirical truncated singular value decompositions(TSVD)and the linearized Bregman iteration.The L1 penalty term is applied to construct the objective function,and then the linearized Bregman iteration is utilized to obtain fast convergence.To reduce the complexity of the computation,empirical TSVD is proposed to compress the kernel matrix and determine the appropriate truncated position.This novel inversion method is validated using numerical simulations.The results indicate that the proposed novel method is significantly efficient and can achieve quick and effective data solutions with low signal-to-noise ratios.展开更多
为识别城市轨道交通网络关键站点并研究其多年演化,构建基于截断奇异值分解(truncated singular value decomposition,TSVD)的关键站点识别方法,选取北京市2011—2019年早高峰时段的OD数据,通过关键特征向量分析网络客流演变并对城轨网...为识别城市轨道交通网络关键站点并研究其多年演化,构建基于截断奇异值分解(truncated singular value decomposition,TSVD)的关键站点识别方法,选取北京市2011—2019年早高峰时段的OD数据,通过关键特征向量分析网络客流演变并对城轨网络中关键站点进行识别,将其与复杂网络方法的识别结果进行对比。分析表明:TSVD法能很好地应用于考虑OD分布的网络关键站点识别,识别结果能更好代表网络客流的空间分布。从识别结果看,北京轨道交通关键站点空间布局呈现多中心发展趋势,如西北西二旗,西南丰台科技园等站点逐步形成网络客流中心并相互联系;东南土桥、东北俸伯等站点也初步呈现网络客流中心的特征。展开更多
为了改进时域法(time domain method,简称TDM)识别桥面移动荷载时存在的识别精度受测量噪声、响应类型及数量影响较大等缺陷,在截断奇异值分解(truncated singular value decomposition,简称TSVD)的基础上,提出了基于分段多项式截断奇...为了改进时域法(time domain method,简称TDM)识别桥面移动荷载时存在的识别精度受测量噪声、响应类型及数量影响较大等缺陷,在截断奇异值分解(truncated singular value decomposition,简称TSVD)的基础上,提出了基于分段多项式截断奇异值分解(piecewise polynomial truncated singular value decomposition,简称PPTSVD)识别桥梁移动荷载。采用简化欧拉梁模型,由反演车辆荷载作用下桥梁的弯矩响应和加速度响应识别桥面移动荷载,得到了不同噪声水平下TDM,TSVD与PPTSVD的识别结果。研究结果表明,与采用奇异值分解(singular value decomposition,简称SVD)进行常规降噪的TDM相比,采用TSVD识别移动荷载在识别精度和抗噪性能方面均有一定提高,且由TSVD改进的PPTSVD识别方法较前两种方法具有更加明显的优势;PPTSVD识别精度高、识别结果受响应类型及响应组合影响较小且具有良好的鲁棒性,更适用于桥梁移动荷载的现场识别。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12261026,11961012,12201149)by the Natural Science Foundation of Guangxi Province(Grant Nos.2016GXNSFAA380074,2023GXNSFAA026067)+4 种基金by the Innovation Project of GUET Graduate Education(Grant No.2022YXW01)by the GUET Graduate Innovation Project(Grant No.2022YCXS142)by the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Grant Nos.YQ23103,YQ21103,YQ22106)by the Special Fund for Science and Technological Bases and Talents of Guangxi(Grant No.2021AC06001)by the Guizhou Science and Technology Program of Projects(Grant No.ZK2021G339)。
文摘The truncated singular value decomposition has been widely used in many areas of science including engineering,and statistics,etc.In this paper,the original truncated complex singular value decomposition problem is formulated as a Riemannian optimiza-tion problem on a product of two complex Stiefel manifolds,a practical algorithm based on the generic Riemannian trust-region method of Absil et al.is presented to solve the underlying problem,which enjoys the global convergence and local superlinear conver-gence rate.Numerical experiments are provided to illustrate the efficiency of the proposed method.Comparisons with some classical Riemannian gradient-type methods,the existing Riemannian version of limited-memory BFGS algorithms in the MATLAB toolbox Manopt and the Riemannian manifold optimization library ROPTLIB,and some latest infeasible methods for solving manifold optimization problems,are also provided to show the merits of the proposed approach.
文摘目前,传统雷达成像方法的发展日渐完善,但在前视成像场景下,雷达难以获取方位向上的多普勒信息,从而限制了其方位向分辨率。为了解决这一问题,国内提出了微波关联成像方法。微波关联成像方法利用关联成像原理进行雷达成像,无需利用目标的多普勒信息即可实现高分辨率成像。这一新型雷达成像方法突破了传统雷达成像方法中受限于雷达孔径的分辨率,具有极高的前视成像发展潜力。目前,国内外对微波关联成像的研究主要集中在产生随机波前、解决模型失配问题和研制超材料孔径等方面,但对关键的关联过程的优化主要集中在压缩感知和深度学习方面,而在伪逆算法方面的研究相对较少。因此,为了进一步完善微波关联成像体系,本文提出了一种新的针对伪逆算法优化的微波关联前视成像方法。本文结合截断奇异值分解(Truncated Singular Value Decomposition,TSVD)处理和吉洪诺夫正则化(Tikhonov)提出了奇异值分解和吉洪诺夫正则化的联合处理方法(TSVD-Tikhonov,TSVDT),通过TSVDT方法对时空随机辐射阵进行处理,然后进行压缩关联成像。同时,本文比较了广义交叉验证(Generalized Cross-Validation,GCV)和L曲线法,并证明了在微波关联成像方法中,利用GCV法选择截断参数的运算耗时更短且更稳定。最后,利用微波暗室实验验证了该方法在低信噪比条件下提高了成像的抗干扰能力,并且仍能保持较快的运算速度。
基金support by the National Nature Science Foundation of China(42174142)CNPC Innovation Found(2021DQ02-0402)National Key Foundation for Exploring Scientific Instrument of China(2013YQ170463).
文摘The low-field nuclear magnetic resonance(NMR)technique has been used to probe the pore size distribution and the fluid composition in geophysical prospecting and related fields.However,the speed and accuracy of the existing numerical inversion methods are still challenging due to the ill-posed nature of the first kind Fredholm integral equation and the contamination of the noises.This paper proposes a novel inversion algorithmto accelerate the convergence and enhance the precision using empirical truncated singular value decompositions(TSVD)and the linearized Bregman iteration.The L1 penalty term is applied to construct the objective function,and then the linearized Bregman iteration is utilized to obtain fast convergence.To reduce the complexity of the computation,empirical TSVD is proposed to compress the kernel matrix and determine the appropriate truncated position.This novel inversion method is validated using numerical simulations.The results indicate that the proposed novel method is significantly efficient and can achieve quick and effective data solutions with low signal-to-noise ratios.
文摘为识别城市轨道交通网络关键站点并研究其多年演化,构建基于截断奇异值分解(truncated singular value decomposition,TSVD)的关键站点识别方法,选取北京市2011—2019年早高峰时段的OD数据,通过关键特征向量分析网络客流演变并对城轨网络中关键站点进行识别,将其与复杂网络方法的识别结果进行对比。分析表明:TSVD法能很好地应用于考虑OD分布的网络关键站点识别,识别结果能更好代表网络客流的空间分布。从识别结果看,北京轨道交通关键站点空间布局呈现多中心发展趋势,如西北西二旗,西南丰台科技园等站点逐步形成网络客流中心并相互联系;东南土桥、东北俸伯等站点也初步呈现网络客流中心的特征。
文摘利用平滑l_0范数(Smoothed l_0,SL0)算法估计MIMO雷达目标参数时,在设定初始值和计算梯度投影中需要对呈病态的感知矩阵进行求伪逆运算,然而病态矩阵的伪逆精度较低,从而导致SL0算法无法直接用于估计MIMO雷达的目标参数。为此,本文提出了一种基于SL0算法和截断奇异值分解(Truncated Singular Value Decomposition,TSVD)的MIMO雷达目标参数估计方法。该方法对感知矩阵进行SVD变换,并设定特征值均值为截断门限,保留大于门限的特征值及其对应的左奇异向量和右奇异向量,并利用SVD反变换获得条件数较小的非病态感知矩阵,实现了SL0算法在MIMO雷达目标信号重构问题中的应用。实验结果表明,与迭代加权lq算法相比,本文方法在保证目标信号重构性能的基础上,明显提高了MIMO雷达的目标参数估计速度。
文摘为了改进时域法(time domain method,简称TDM)识别桥面移动荷载时存在的识别精度受测量噪声、响应类型及数量影响较大等缺陷,在截断奇异值分解(truncated singular value decomposition,简称TSVD)的基础上,提出了基于分段多项式截断奇异值分解(piecewise polynomial truncated singular value decomposition,简称PPTSVD)识别桥梁移动荷载。采用简化欧拉梁模型,由反演车辆荷载作用下桥梁的弯矩响应和加速度响应识别桥面移动荷载,得到了不同噪声水平下TDM,TSVD与PPTSVD的识别结果。研究结果表明,与采用奇异值分解(singular value decomposition,简称SVD)进行常规降噪的TDM相比,采用TSVD识别移动荷载在识别精度和抗噪性能方面均有一定提高,且由TSVD改进的PPTSVD识别方法较前两种方法具有更加明显的优势;PPTSVD识别精度高、识别结果受响应类型及响应组合影响较小且具有良好的鲁棒性,更适用于桥梁移动荷载的现场识别。