期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effects of wind barriers on the aerodynamic characteristics of bridge-train system for a road-rail same-story truss bridge 被引量:2
1
作者 LIU Lu-lu ZOU Yun-feng +2 位作者 HE Xu-hui WANG Zhen ZHOU Xu-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2690-2705,共16页
Wind barriers are commonly adopted to prevent the effects of wind on high-speed railway trains,but their wind-proofing effects are greatly affected by substructures.To investigate the effects of wind barriers on the a... Wind barriers are commonly adopted to prevent the effects of wind on high-speed railway trains,but their wind-proofing effects are greatly affected by substructures.To investigate the effects of wind barriers on the aerodynamic characteristic of road-rail same-story truss bridge-train systems,wind tunnel experiments were carried out using a 1:50 scale model.Taking a wind barrier with a porosity of 30%as an example,the aerodynamic characteristics of the bridge train system under different wind barrier layouts(single-sided and double-sided),positions(inside and outside)and heights(2.5 m,3.0 m,3.5 m and 4.0 m)were tested.The results indicate that the downstream inside wind barrier has almost no effect on the aerodynamic characteristics of the train-bridge system,but the downstream outside wind barrier increases the drag coefficient of the bridge and reduces both the lift coefficient and drag coefficient of the train due to its effect on the trains wind pressure distribution,especially on the trains leeward surface.When the wind barriers are arranged on the outside,their effects on the drag coefficient of the bridge and shielding effect on the train are greater than when they are arranged on the inside.As the height of the wind barrier increases,the drag coefficient of the bridge also gradually increases,and the lift coefficient and drag coefficient of the train gradually decrease,but the degree of variation of the aerodynamic coefficient with the height is slightly different due to the different wind barrier layouts.When 3.0 m high double-sided wind barriers are arranged on the outside of the truss bridge,the drag coefficient of the bridge only increases by 12%,while the drag coefficient of the train decreases by 55%. 展开更多
关键词 wind barriers road-rail same-story truss bridge high-speed railway aerodynamic coefficients train-bridge system wind tunnel test
下载PDF
Defect Inspection Technology for Steel Truss Suspension Bridges
2
作者 Bo Liu Xu Meng +1 位作者 Ji Li Zhi Tu 《Journal of World Architecture》 2024年第2期12-16,共5页
Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension b... Steel truss suspension bridges are prone to developing defects after prolonged use.These defects may include corrosion of the main cable or the steel truss.To ensure the normal and safe functioning of the suspension bridge,it is necessary to inspect for defects promptly,understand the cause of the defect,and locate it through the use of inspection technology.By promptly addressing defects,the suspension bridge’s safety can be ensured.The author has analyzed the common defects and causes of steel truss suspension bridges and proposed specific inspection technologies.This research is intended to aid in the timely discovery of steel truss suspension bridge defects. 展开更多
关键词 Steel truss suspension bridge DEFECT Inspection technology
下载PDF
Seismic response of the long-span steel truss arch bridge with the thrust under multidimensional excitation 被引量:1
3
作者 Yongliang Zhang Jibei Ma +1 位作者 Xingchong Chen Yun Wang 《Railway Sciences》 2022年第1期40-55,共16页
Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of ma... Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.Design/methodology/approach–Taking a 490 m deck type railway steel truss arch bridge as the background,the dynamic calculation model of the whole bridge was established by SAP2000 software.The seismic response analyses under one-,two-and three-dimension(1D,2D and 3D)uniform ground motion excitations were carried out.Findings–For the steel truss arch bridge composed of multiple arch ribs,any single direction ground motion excitation will cause large axial force in the chord of arch rib.The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation.The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation.For the bottom chord of arch rib,the arch foot is the weak part of earthquake resistance,but for the upper chord of arch rib,the arch foot,arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts.The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force,but the normal stress of the upper chord of the arch rib is caused by the axial force,in-plane and out of plane bending moment.Originality/value–The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges. 展开更多
关键词 Railway steel truss arch bridge Seismic response Multidimensional excitation Spatial coupling effect Internal force component
下载PDF
Aerodynamic characteristics of a high-speed train crossing the wake of a bridge tower from moving model experiments 被引量:5
4
作者 Jinfeng Wu Xiaozhen Li +1 位作者 C.S.Cai Dejun Liu 《Railway Engineering Science》 2022年第2期221-241,共21页
In a strong crosswind,the wake of a bridge tower will lead to an abrupt change of the aerodynamic forces acting on a vehicle passing through it,which may result in problems related to the transportation safety.This st... In a strong crosswind,the wake of a bridge tower will lead to an abrupt change of the aerodynamic forces acting on a vehicle passing through it,which may result in problems related to the transportation safety.This study investigates the transient aerodynamic characteristics of a high-speed train moving in a truss girder bridge and passing by a bridge tower in a wind tunnel.The scaled ratio of the train,bridge,and tower are 1:30.Effects of various parameters such as the incoming wind speed,train speed,and yaw angle on the aerodynamic performance of the train were considered.Then the sudden change mechanism of aerodynamic loads on the train when it crosses over the tower was further discussed.The results show that the bridge tower has an apparent shielding effect on the train passing through it,with the influencing width being larger than the width of the tower.The train speed is the main factor affecting the influencing width of aerodynamic coefficients,and the mutation amplitude is mainly related to the yaw angle obtained by changing the incoming wind speed or train speed.The vehicle movement introduces an asymmetry of loading on the train in the process of approaching and leaving the wake of the bridge tower,which should not be neglected. 展开更多
关键词 Vehicle aerodynamics Wind tunnel test Moving train bridge tower Shielding effect Sudden change mechanism truss bridge
下载PDF
Mechanical behavior of concrete-filled rectangular steel tubular composite truss bridge in the negative moment region 被引量:8
5
作者 Beichen Pu Xuhong Zhou +2 位作者 Yongjian Liu Bin Liu Lei Jiang 《Journal of Traffic and Transportation Engineering(English Edition)》 CSCD 2021年第5期795-814,共20页
Concrete-filled rectangular steel tubular(CFRST)composite truss bridge is a new type of structure composed of a CFRST truss and concrete deck slab.This new type of bridge has the advantages of high structural force-tr... Concrete-filled rectangular steel tubular(CFRST)composite truss bridge is a new type of structure composed of a CFRST truss and concrete deck slab.This new type of bridge has the advantages of high structural force-transferring efficiency,rapid assembly construction speed and excellent total life cycle,which meets the construction concept of green,recyclable and sustainable development.Due to the broad application prospects,experiment on the flexural behavior of CFRST composite truss bridge in the negative moment region was reported by authors previously.This paper thus presents a finite element analysis(FEA)modelling verified by the reported test data to further investigate the detailed analytical behavior of this structure.The structural response and failure mechanism of CFRST composite truss beam in the negative moment region are studied.In addition,the important structural design parameters on the flexural performance of the CFRST composite truss beam are also investigated,including the height to span ratio,the brace-to-chord wall thickness ratio,the reinforcement ratio of steel reinforcements and prestressed tendons and the strength grade of concrete infill in chords.Finally,the reasonable structural design parameters range are proposed for the optimum design of the CFRST composite truss bridge. 展开更多
关键词 bridge engineering CFRST composite truss bridge Concrete deck slab RECYCLABLE Failure mechanism Design parameters
原文传递
Double-composite rectangular truss bridge and its joint analysis 被引量:11
6
作者 Yongjian Liu Zhihua Xiong +3 位作者 Yalin Luo Gao Cheng Ge Liu Jian Yang 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第4期249-257,共9页
This paper describes a novel composite tubular truss bridge with concrete slab and concrete-filled rectangular chords. With concrete slab plus truss system and joints rein- forced with concrete and Perfobond Leiste ri... This paper describes a novel composite tubular truss bridge with concrete slab and concrete-filled rectangular chords. With concrete slab plus truss system and joints rein- forced with concrete and Perfobond Leiste rib, double composite truss bridge proved to be a fairly suitable solution in negative moment area. Perfobond Leiste shear connector (PBL) is widely implemented in the composite structure for its outstanding fatigue resistance. In this pilot bridge, Perfobond Leister ribs (PBR) were installed in the truss girder's joints, which played double roles as shear connector and stiffener. An erection method and overall bridge structural analysis were then presented. Typical joints in the pilot bridge were selected to analyze the effect of PBR. Investigation of the effect of PBR in concrete- filled tubular joints was elaborated. Comparison has revealed that concrete-filled tubular joints with PBR have much higher constraint capability than joints without PBR. For rect- angular tubular truss, the punching shear force of the concrete filled joint with PBR is approximately 43% larger than that of the joint without PBR. Fatigue performance of the joint installed with PBR was improved, which was found through analysis of the stress concentration factor of joint. The PBR installed in the joints mitigated the stress concen- tration factor in the chord face. Therefore, the advantages of this new type of bridge are demonstrated, including the convenience of construction using rectangular truss, inno- vative concept of structural design and better global and local performances. 展开更多
关键词 bridge engineeringComposite truss bridgeloint analysisPerfobond ribConcrete-filled tube
原文传递
Mechanical Analysis and Numerical Simulation for New Type of Dynamic Control Devices
7
作者 CHEN Suhua LI Ruiqi +2 位作者 FEI Liang YU Zhiguang DING Jianming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第6期735-749,共15页
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s... The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ. 展开更多
关键词 dynamic control device double-deck cable-stayed bridge with steel truss beam cable-sliding friction aseismic bearings(CSFABs) elasticity fluid viscous dampers composite devices(EVFDs)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部