A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemica...A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemical compositions of this steel were suitable for welding.However,the aged steel contained much sulfur.Cruciform welded joints were fabricated with this aged steel.Welding defects or cracks were not observed in the joints.The Vickers hardness test on the welded part did not confirm extreme hardening or softening.After yielding by the static tensile test,the cruciform joints were fractured at the welded parts.One of the specimens was fractured in the middle of the thickness of the aged steel.The Sulfur contained in the aged steel might cause this type of fracture.The results show that there may be a risk of brittle fracture not only from the welded part but also from the base metal.The chemical compositions of aged steel must be analyzed when repair welding is applied to the steel.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure...Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.展开更多
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure...Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.展开更多
To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular...To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular connectors and steel-reactive powder concrete (RPC). Push-out tests were conducted to study the newdeck's shear performance. During the experimental process,specimens were divided into two groups which are composed of steel tubular connectors with or without penetrative bars set in. Then,researchers analyzed destroyed models and mechanisms of the composite structure under shear forces. Results showed that test models in two groups,once destroyed,displayed similar shear fracture,which appeared on the lower margin of the steel tubular wall along the welds. Meanwhile,RPC under the connector,for varied tests,was crushed at the same stage,although the large shear and bending deformation just occurred on connectors with penetrative bars. Additionally,shear capacity of specimens with penetrative bars,compared with the ones without bars,unexpectedly decreased by 20%,but the structural ductility was 1.75 times as much,and the ductility coefficients of specimens were all larger than 3.5,demonstrating certain deformation capacity.展开更多
In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal)...In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.展开更多
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe...In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.展开更多
The Podilskyi Arch bridge is crossing the Dnipro River in center of Kiev and is part of a 7.4 km long link which connects the center of Kiev with the “sleeping district” on the left bank of the river. The bridge has...The Podilskyi Arch bridge is crossing the Dnipro River in center of Kiev and is part of a 7.4 km long link which connects the center of Kiev with the “sleeping district” on the left bank of the river. The bridge has a main span of 344 m intended for six lanes of vehicles in the top level and two metro lines in the bottom level plus large diameter water pipes. The bridge is of steel, except of the reinforced concrete bases of the lower parts of the arches. The draft design works began in 1991 and in 2005 parallel design and construction work started. Due to the financial crisis in Ukraine, the work was interrupted for several years but construction recommenced in 2018 and the bridge is now planned to be completed in 2020 and the first stage of the transition in 2022.展开更多
To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of...To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.展开更多
文摘A series of experiments was performed to investigate the weldability of steel used in an aged bridge.A steel material used in an aged railway bridge constructed in 1912 was extracted for this investigation.The chemical compositions of this steel were suitable for welding.However,the aged steel contained much sulfur.Cruciform welded joints were fabricated with this aged steel.Welding defects or cracks were not observed in the joints.The Vickers hardness test on the welded part did not confirm extreme hardening or softening.After yielding by the static tensile test,the cruciform joints were fractured at the welded parts.One of the specimens was fractured in the middle of the thickness of the aged steel.The Sulfur contained in the aged steel might cause this type of fracture.The results show that there may be a risk of brittle fracture not only from the welded part but also from the base metal.The chemical compositions of aged steel must be analyzed when repair welding is applied to the steel.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
基金Project(2004G016-B) supported by the Science and Technology Development Program of Railways Department,China
文摘Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.
文摘Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51478120)
文摘To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular connectors and steel-reactive powder concrete (RPC). Push-out tests were conducted to study the newdeck's shear performance. During the experimental process,specimens were divided into two groups which are composed of steel tubular connectors with or without penetrative bars set in. Then,researchers analyzed destroyed models and mechanisms of the composite structure under shear forces. Results showed that test models in two groups,once destroyed,displayed similar shear fracture,which appeared on the lower margin of the steel tubular wall along the welds. Meanwhile,RPC under the connector,for varied tests,was crushed at the same stage,although the large shear and bending deformation just occurred on connectors with penetrative bars. Additionally,shear capacity of specimens with penetrative bars,compared with the ones without bars,unexpectedly decreased by 20%,but the structural ductility was 1.75 times as much,and the ductility coefficients of specimens were all larger than 3.5,demonstrating certain deformation capacity.
基金The National Natural Science Foundation of China(No.51378122)
文摘In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance.
文摘In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.
文摘The Podilskyi Arch bridge is crossing the Dnipro River in center of Kiev and is part of a 7.4 km long link which connects the center of Kiev with the “sleeping district” on the left bank of the river. The bridge has a main span of 344 m intended for six lanes of vehicles in the top level and two metro lines in the bottom level plus large diameter water pipes. The bridge is of steel, except of the reinforced concrete bases of the lower parts of the arches. The draft design works began in 1991 and in 2005 parallel design and construction work started. Due to the financial crisis in Ukraine, the work was interrupted for several years but construction recommenced in 2018 and the bridge is now planned to be completed in 2020 and the first stage of the transition in 2022.
基金The National Natural Science Foundation of China(No.51878167)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX23_0300).
文摘To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.