With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d...With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflec...Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.展开更多
ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the hete...ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies.展开更多
Sequential recommendation based on amulti-interest framework aims to analyze different aspects of interest based on historical interactions and generate predictions of a user’s potential interest in a list of items.M...Sequential recommendation based on amulti-interest framework aims to analyze different aspects of interest based on historical interactions and generate predictions of a user’s potential interest in a list of items.Most existing methods only focus on what are themultiple interests behind interactions but neglect the evolution of user interests over time.To explore the impact of temporal dynamics on interest extraction,this paper explicitly models the timestamp with amulti-interest network and proposes a time-highlighted network to learn user preferences,which considers not only the interests at different moments but also the possible trends of interest over time.More specifically,the time intervals between historical interactions and prediction moments are first mapped to vectors.Meanwhile,a time-attentive aggregation layer is designed to capture the trends of items in the sequence over time,where the time intervals are seen as additional information to distinguish the importance of different neighbors.Then,the learned items’transition trends are aggregated with the items themselves by a gated unit.Finally,a self-attention network is deployed to capture multiple interests with the obtained temporal information vectors.Extensive experiments are carried out based on three real-world datasets and the results convincingly establish the superiority of the proposed method over other state-of-the-art baselines in terms of model performance.展开更多
GitHub repository recommendation is a research hotspot in the field of open-source software. The current problemswith the repository recommendation systemare the insufficient utilization of open-source community infor...GitHub repository recommendation is a research hotspot in the field of open-source software. The current problemswith the repository recommendation systemare the insufficient utilization of open-source community informationand the fact that the scoring metrics used to calculate the matching degree between developers and repositoriesare developed manually and rely too much on human experience, leading to poor recommendation results. Toaddress these problems, we design a questionnaire to investigate which repository information developers focus onand propose a graph convolutional network-based repository recommendation system (GCNRec). First, to solveinsufficient information utilization in open-source communities, we construct a Developer-Repository networkusing four types of behavioral data that best reflect developers’ programming preferences and extract features ofdevelopers and repositories from the repository content that developers focus on. Then, we design a repositoryrecommendation model based on a multi-layer graph convolutional network to avoid the manual formulation ofscoringmetrics. Thismodel takes the Developer-Repository network, developer features and repository features asinputs, and recommends the top-k repositories that developers are most likely to be interested in by learning theirpreferences. We have verified the proposed GCNRec on the dataset, and by comparing it with other open-sourcerepository recommendation methods, GCNRec achieves higher precision and hit rate.展开更多
Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neura...Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neural Network often has information loss when constructing session graphs;Inadequate consideration is given to influencing factors,such as item price,and users’dynamic interest evolution is not taken into account.A new session recommendation model called Price-aware Session-based Recommendation(PASBR)is proposed to address these limitations.PASBR constructs session graphs by information lossless approaches to fully encode the original session information,then introduces item price as a new factor and models users’price tolerance for various items to influence users’preferences.In addition,PASBR proposes a new method to encode user intent at the item category level and tries to capture the dynamic interest of users over time.Finally,PASBR fuses the multi-perspective features to generate the global representation of users and make a prediction.Specifically,the intent,the short-term and long-term interests,and the dynamic interests of a user are combined.Experiments on two real-world datasets show that PASBR can outperform representative baselines for SBR.展开更多
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combin...A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a mashup.The emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of mashups.Such a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage data.Thus,the question of how to determine the most suitable mashups from big data has become a challenging problem.In this paper,we propose a mashup recommendation framework from big data in mobile networks and the IoT.The proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix factorization.We employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the mashups.We also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization algorithm.We then crawl through a real-world large mashup dataset and perform experiments.The experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.展开更多
The recommendation system(RS)on the strength of Graph Neural Networks(GNN)perceives a user-item interaction graph after collecting all items the user has interacted with.Afterward the RS performs neighborhood aggregat...The recommendation system(RS)on the strength of Graph Neural Networks(GNN)perceives a user-item interaction graph after collecting all items the user has interacted with.Afterward the RS performs neighborhood aggregation on the graph to generate long-term preference representations for the user in quick succession.However,user preferences are dynamic.With the passage of time and some trend guidance,users may generate some short-term preferences,which are more likely to lead to user-item interactions.A GNN recommendation based on long-and short-term preference(LSGNN)is proposed to address the above problems.LSGNN consists of four modules,using a GNN combined with the attention mechanism to extract long-term preference features,using Bidirectional Encoder Representation from Transformers(BERT)and the attention mechanism combined with Bi-Directional Gated Recurrent Unit(Bi-GRU)to extract short-term preference features,using Convolutional Neural Network(CNN)combined with the attention mechanism to add title and description representations of items,finally inner-producing long-term and short-term preference features as well as features of items to achieve recommendations.In experiments conducted on five publicly available datasets from Amazon,LSGNN is superior to state-of-the-art personalized recommendation techniques.展开更多
The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ...The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.展开更多
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the ontology.In that,there are several methods to improve the retrieving...In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the ontology.In that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching time.Since,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation process.To improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data processing.In this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire database.The overall work was implemented for the application of the data recommendation process.These are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching period.Also,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query data.This was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature set.The training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the dataset.These are formed as clusters and paged with proper indexing based on the MPS parameter of similarity metric.The overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision,Recall,F1-score and the accuracy of data retrieval,the query recommendation output,and comparison with other state-of-art methods.展开更多
The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this da...The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this data and creates a profile for all the users,and the recommendation is generated by the user profile.The recommendation generated via content-basedfiltering is provided by observing just a single user’s profile.The primary objective of this RS is to recommend a list of movies based on the user’s preferences.A con-tent-based movie recommendation model is proposed in this research,which recommends movies based on the user’s profile from the Facebook platform.The recommendation system is built with a hybrid model that combines the Mon-arch Butterfly Optimization(MBO)with the Deep Belief Network(DBN).For feature selection,the MBO is utilized,while DBN is used for classification.The datasets used in the experiment are collected from Facebook and MovieLens.The dataset features are evaluated for performance evaluation to validate if data with various attributes can solve the matching recommendations.Eachfile is com-pared with features that prove the features will support movie recommendations.The proposed model’s mean absolute error(MAE)and root-mean-square error(RMSE)values are 0.716 and 0.915,and its precision and recall are 97.35 and 96.60 percent,respectively.Extensive tests have demonstrated the advantages of the proposed method in terms of MAE,RMSE,Precision,and Recall compared to state-of-the-art algorithms such as Fuzzy C-means with Bat algorithm(FCM-BAT),Collaborativefiltering with k-NN and the normalized discounted cumulative gain method(CF-kNN+NDCG),User profile correlation-based similarity(UPCSim),and Deep Autoencoder.展开更多
To make recommendation on items from the user for historical user rating several intelligent systems are using. The most common method is Recommendation systems. The main areas which play major roles are social networ...To make recommendation on items from the user for historical user rating several intelligent systems are using. The most common method is Recommendation systems. The main areas which play major roles are social networking, digital marketing, online shopping and E-commerce. Recommender system consists of several techniques for recommendations. Here we used the well known approach named as Collaborative filtering (CF). There are two types of problems mainly available with collaborative filtering. They are complete cold start (CCS) problem and incomplete cold start (ICS) problem. The authors proposed three novel methods such as collaborative filtering, and artificial neural networks and at last support vector machine to resolve CCS as well ICS problems. Based on the specific deep neural network SADE we can be able to remove the characteristics of products. By using sequential active of users and product characteristics we have the capability to adapt the cold start product ratings with the applications of the state of the art CF model, time SVD++. The proposed system consists of Netflix rating dataset which is used to perform the baseline techniques for rating prediction of cold start items. The calculation of two proposed recommendation techniques is compared on ICS items, and it is proved that it will be adaptable method. The proposed method can be able to transfer the products since cold start transfers to non-cold start status. Artificial Neural Network (ANN) is employed here to extract the item content features. One of the user preferences such as temporal dynamics is used to obtain the contented characteristics into predictions to overcome those problems. For the process of classification we have used linear support vector machine classifiers to receive the better performance when compared with the earlier methods.展开更多
On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend ha...On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend hashtags for tweets has received wide attention.The previous hashtag recommendation methods were to convert the task into a multi-class classification problem.However,these methods can only recommend hashtags that appeared in historical information,and cannot recommend the new ones.In this work,we extend the self-attention mechanism to turn the hashtag recommendation task into a sequence labeling task.To train and evaluate the proposed method,we used the real tweet data which is collected from Twitter.Experimental results show that the proposed method can be significantly better than the most advanced method.Compared with the state-of-the-art methods,the accuracy of our method has been increased 4%.展开更多
Purpose:Based on real-world academic data,this study aims to use network embedding technology to mining academic relationships,and investigate the effectiveness of the proposed embedding model on academic collaborator...Purpose:Based on real-world academic data,this study aims to use network embedding technology to mining academic relationships,and investigate the effectiveness of the proposed embedding model on academic collaborator recommendation tasks.Design/methodology/approach:We propose an academic collaborator recommendation model based on attributed network embedding(ACR-ANE),which can get enhanced scholar embedding and take full advantage of the topological structure of the network and multi-type scholar attributes.The non-local neighbors for scholars are defined to capture strong relationships among scholars.A deep auto-encoder is adopted to encode the academic collaboration network structure and scholar attributes into a low-dimensional representation space.Findings:1.The proposed non-local neighbors can better describe the relationships among scholars in the real world than the first-order neighbors.2.It is important to consider the structure of the academic collaboration network and scholar attributes when recommending collaborators for scholars simultaneously.Research limitations:The designed method works for static networks,without taking account of the network dynamics.Practical implications:The designed model is embedded in academic collaboration network structure and scholarly attributes,which can be used to help scholars recommend potential collaborators.Originality/value:Experiments on two real-world scholarly datasets,Aminer and APS,show that our proposed method performs better than other baselines.展开更多
Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-wor...Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-work lifetime considerably.Securing WSN is a challenging issue faced by researchers.Trust systems are very helpful in detecting interfering nodes in WSN.Researchers have successfully applied Nature-inspired Metaheuristics Optimization Algorithms as a decision-making factor to derive an improved and effective solution for a real-time optimization problem.The metaheuristic Elephant Herding Optimizations(EHO)algorithm is formulated based on ele-phant herding in their clans.EHO considers two herding behaviors to solve and enhance optimization problem.Based on Elephant Herd Optimization,a trust-based security method is built in this work.The proposed routing selects routes to destination based on the trust values,thus,finding optimal secure routes for transmitting data.Experimental results have demonstrated the effectiveness of the proposed EHO based routing.The Average Packet Loss Rate of the proposed Trust Elephant Herd Optimization performs better by 35.42%,by 1.45%,and by 31.94%than LEACH,Elephant Herd Optimization,and Trust LEACH,respec-tively at Number of Nodes 3000.As the proposed routing is efficient in selecting secure routes,the average packet loss rate is significantly reduced,improving the network’s performance.It is also observed that the lifetime of the network is enhanced with the proposed Trust Elephant Herd Optimization.展开更多
Bundle recommendation aims to provide users with convenient one-stop solutions by recommending bundles of related items that cater to their diverse needs. However, previous research has neglected the interaction betwe...Bundle recommendation aims to provide users with convenient one-stop solutions by recommending bundles of related items that cater to their diverse needs. However, previous research has neglected the interaction between bundle and item views and relied on simplistic methods for predicting user-bundle relationships. To address this limitation, we propose Hybrid Contrastive Learning for Bundle Recommendation (HCLBR). Our approach integrates unsupervised and supervised contrastive learning to enrich user and bundle representations, promoting diversity. By leveraging interconnected views of user-item and user-bundle nodes, HCLBR enhances representation learning for robust recommendations. Evaluation on four public datasets demonstrates the superior performance of HCLBR over state-of-the-art baselines. Our findings highlight the significance of leveraging contrastive learning and interconnected views in bundle recommendation, providing valuable insights for marketing strategies and recommendation system design.展开更多
Session-based recommendation aims to predict user preferences based on anonymous behavior sequences.Recent research on session-based recommendation systems has mainly focused on utilizing attention mechanisms on seque...Session-based recommendation aims to predict user preferences based on anonymous behavior sequences.Recent research on session-based recommendation systems has mainly focused on utilizing attention mechanisms on sequential patterns,which has achieved significant results.However,most existing studies only consider individual items in a session and do not extract information from continuous items,which can easily lead to the loss of information on item transition relationships.Therefore,this paper proposes a session-based recommendation algorithm(SGT)based on Gated Recurrent Unit(GRU)and Transformer,which captures user interests by learning continuous items in the current session and utilizes all item transitions on sessions in a more refined way.By combining short-term sessions and long-term behavior,user dynamic preferences are captured.Extensive experiments were conducted on three session-based recommendation datasets,and compared to the baseline methods,both the recall rate Recall@20 and the mean reciprocal rank MRR@20 of the SGT algorithm were improved,demonstrating the effectiveness of the SGT method.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.T2293771)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
基金the National Natural Science Foundation of China(Grant Nos.62102347,62376041,62172352)Guangdong Ocean University Research Fund Project(Grant No.060302102304).
文摘Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.
文摘ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies.
基金supported in part by the National Natural Science Foundation of China under Grant 61702060.
文摘Sequential recommendation based on amulti-interest framework aims to analyze different aspects of interest based on historical interactions and generate predictions of a user’s potential interest in a list of items.Most existing methods only focus on what are themultiple interests behind interactions but neglect the evolution of user interests over time.To explore the impact of temporal dynamics on interest extraction,this paper explicitly models the timestamp with amulti-interest network and proposes a time-highlighted network to learn user preferences,which considers not only the interests at different moments but also the possible trends of interest over time.More specifically,the time intervals between historical interactions and prediction moments are first mapped to vectors.Meanwhile,a time-attentive aggregation layer is designed to capture the trends of items in the sequence over time,where the time intervals are seen as additional information to distinguish the importance of different neighbors.Then,the learned items’transition trends are aggregated with the items themselves by a gated unit.Finally,a self-attention network is deployed to capture multiple interests with the obtained temporal information vectors.Extensive experiments are carried out based on three real-world datasets and the results convincingly establish the superiority of the proposed method over other state-of-the-art baselines in terms of model performance.
基金supported by Special Funds for the Construction of an Innovative Province of Hunan,No.2020GK2028.
文摘GitHub repository recommendation is a research hotspot in the field of open-source software. The current problemswith the repository recommendation systemare the insufficient utilization of open-source community informationand the fact that the scoring metrics used to calculate the matching degree between developers and repositoriesare developed manually and rely too much on human experience, leading to poor recommendation results. Toaddress these problems, we design a questionnaire to investigate which repository information developers focus onand propose a graph convolutional network-based repository recommendation system (GCNRec). First, to solveinsufficient information utilization in open-source communities, we construct a Developer-Repository networkusing four types of behavioral data that best reflect developers’ programming preferences and extract features ofdevelopers and repositories from the repository content that developers focus on. Then, we design a repositoryrecommendation model based on a multi-layer graph convolutional network to avoid the manual formulation ofscoringmetrics. Thismodel takes the Developer-Repository network, developer features and repository features asinputs, and recommends the top-k repositories that developers are most likely to be interested in by learning theirpreferences. We have verified the proposed GCNRec on the dataset, and by comparing it with other open-sourcerepository recommendation methods, GCNRec achieves higher precision and hit rate.
文摘Session-based Recommendation(SBR)aims to accurately recom-mend a list of items to users based on anonymous historical session sequences.Existing methods for SBR suffer from several limitations:SBR based on Graph Neural Network often has information loss when constructing session graphs;Inadequate consideration is given to influencing factors,such as item price,and users’dynamic interest evolution is not taken into account.A new session recommendation model called Price-aware Session-based Recommendation(PASBR)is proposed to address these limitations.PASBR constructs session graphs by information lossless approaches to fully encode the original session information,then introduces item price as a new factor and models users’price tolerance for various items to influence users’preferences.In addition,PASBR proposes a new method to encode user intent at the item category level and tries to capture the dynamic interest of users over time.Finally,PASBR fuses the multi-perspective features to generate the global representation of users and make a prediction.Specifically,the intent,the short-term and long-term interests,and the dynamic interests of a user are combined.Experiments on two real-world datasets show that PASBR can outperform representative baselines for SBR.
基金supported by the National Key R&D Program of China (No.2021YFF0901002)the National Natural Science Foundation of China (No.61802291)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang (GK199900299012-025)Fundamental Research Funds for the Central Universities (No.JB210311).
文摘A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually limited.To enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a mashup.The emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of mashups.Such a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage data.Thus,the question of how to determine the most suitable mashups from big data has become a challenging problem.In this paper,we propose a mashup recommendation framework from big data in mobile networks and the IoT.The proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix factorization.We employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the mashups.We also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization algorithm.We then crawl through a real-world large mashup dataset and perform experiments.The experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.
基金supported by the National Natural Science Foundation of China under Grant 61762031the Science and Technology Major Project of Guangxi Province under Grant AA19046004+2 种基金the Natural Science Foundation of Guangxi under Grant 2021JJA170130the Innovation Project of Guangxi Graduate Education under Grant YCSW2022326the Research Project of Guangxi Philosophy and Social Science Planning under Grant 21FGL040。
文摘The recommendation system(RS)on the strength of Graph Neural Networks(GNN)perceives a user-item interaction graph after collecting all items the user has interacted with.Afterward the RS performs neighborhood aggregation on the graph to generate long-term preference representations for the user in quick succession.However,user preferences are dynamic.With the passage of time and some trend guidance,users may generate some short-term preferences,which are more likely to lead to user-item interactions.A GNN recommendation based on long-and short-term preference(LSGNN)is proposed to address the above problems.LSGNN consists of four modules,using a GNN combined with the attention mechanism to extract long-term preference features,using Bidirectional Encoder Representation from Transformers(BERT)and the attention mechanism combined with Bi-Directional Gated Recurrent Unit(Bi-GRU)to extract short-term preference features,using Convolutional Neural Network(CNN)combined with the attention mechanism to add title and description representations of items,finally inner-producing long-term and short-term preference features as well as features of items to achieve recommendations.In experiments conducted on five publicly available datasets from Amazon,LSGNN is superior to state-of-the-art personalized recommendation techniques.
基金This work was partly supported by the Basic Ability Improvement Project for Young andMiddle-aged Teachers in Guangxi Colleges andUniversities(2021KY1800,2021KY1804).
文摘The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.
文摘In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the ontology.In that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching time.Since,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation process.To improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data processing.In this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire database.The overall work was implemented for the application of the data recommendation process.These are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching period.Also,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query data.This was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature set.The training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the dataset.These are formed as clusters and paged with proper indexing based on the MPS parameter of similarity metric.The overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision,Recall,F1-score and the accuracy of data retrieval,the query recommendation output,and comparison with other state-of-art methods.
文摘The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this data and creates a profile for all the users,and the recommendation is generated by the user profile.The recommendation generated via content-basedfiltering is provided by observing just a single user’s profile.The primary objective of this RS is to recommend a list of movies based on the user’s preferences.A con-tent-based movie recommendation model is proposed in this research,which recommends movies based on the user’s profile from the Facebook platform.The recommendation system is built with a hybrid model that combines the Mon-arch Butterfly Optimization(MBO)with the Deep Belief Network(DBN).For feature selection,the MBO is utilized,while DBN is used for classification.The datasets used in the experiment are collected from Facebook and MovieLens.The dataset features are evaluated for performance evaluation to validate if data with various attributes can solve the matching recommendations.Eachfile is com-pared with features that prove the features will support movie recommendations.The proposed model’s mean absolute error(MAE)and root-mean-square error(RMSE)values are 0.716 and 0.915,and its precision and recall are 97.35 and 96.60 percent,respectively.Extensive tests have demonstrated the advantages of the proposed method in terms of MAE,RMSE,Precision,and Recall compared to state-of-the-art algorithms such as Fuzzy C-means with Bat algorithm(FCM-BAT),Collaborativefiltering with k-NN and the normalized discounted cumulative gain method(CF-kNN+NDCG),User profile correlation-based similarity(UPCSim),and Deep Autoencoder.
文摘To make recommendation on items from the user for historical user rating several intelligent systems are using. The most common method is Recommendation systems. The main areas which play major roles are social networking, digital marketing, online shopping and E-commerce. Recommender system consists of several techniques for recommendations. Here we used the well known approach named as Collaborative filtering (CF). There are two types of problems mainly available with collaborative filtering. They are complete cold start (CCS) problem and incomplete cold start (ICS) problem. The authors proposed three novel methods such as collaborative filtering, and artificial neural networks and at last support vector machine to resolve CCS as well ICS problems. Based on the specific deep neural network SADE we can be able to remove the characteristics of products. By using sequential active of users and product characteristics we have the capability to adapt the cold start product ratings with the applications of the state of the art CF model, time SVD++. The proposed system consists of Netflix rating dataset which is used to perform the baseline techniques for rating prediction of cold start items. The calculation of two proposed recommendation techniques is compared on ICS items, and it is proved that it will be adaptable method. The proposed method can be able to transfer the products since cold start transfers to non-cold start status. Artificial Neural Network (ANN) is employed here to extract the item content features. One of the user preferences such as temporal dynamics is used to obtain the contented characteristics into predictions to overcome those problems. For the process of classification we have used linear support vector machine classifiers to receive the better performance when compared with the earlier methods.
文摘On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend hashtags for tweets has received wide attention.The previous hashtag recommendation methods were to convert the task into a multi-class classification problem.However,these methods can only recommend hashtags that appeared in historical information,and cannot recommend the new ones.In this work,we extend the self-attention mechanism to turn the hashtag recommendation task into a sequence labeling task.To train and evaluate the proposed method,we used the real tweet data which is collected from Twitter.Experimental results show that the proposed method can be significantly better than the most advanced method.Compared with the state-of-the-art methods,the accuracy of our method has been increased 4%.
基金supported by National Natural Science Foundation of China(No.61603310)the Fundamental Research Funds for the Central Universities(No.XDJK2018B019).
文摘Purpose:Based on real-world academic data,this study aims to use network embedding technology to mining academic relationships,and investigate the effectiveness of the proposed embedding model on academic collaborator recommendation tasks.Design/methodology/approach:We propose an academic collaborator recommendation model based on attributed network embedding(ACR-ANE),which can get enhanced scholar embedding and take full advantage of the topological structure of the network and multi-type scholar attributes.The non-local neighbors for scholars are defined to capture strong relationships among scholars.A deep auto-encoder is adopted to encode the academic collaboration network structure and scholar attributes into a low-dimensional representation space.Findings:1.The proposed non-local neighbors can better describe the relationships among scholars in the real world than the first-order neighbors.2.It is important to consider the structure of the academic collaboration network and scholar attributes when recommending collaborators for scholars simultaneously.Research limitations:The designed method works for static networks,without taking account of the network dynamics.Practical implications:The designed model is embedded in academic collaboration network structure and scholarly attributes,which can be used to help scholars recommend potential collaborators.Originality/value:Experiments on two real-world scholarly datasets,Aminer and APS,show that our proposed method performs better than other baselines.
文摘Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-work lifetime considerably.Securing WSN is a challenging issue faced by researchers.Trust systems are very helpful in detecting interfering nodes in WSN.Researchers have successfully applied Nature-inspired Metaheuristics Optimization Algorithms as a decision-making factor to derive an improved and effective solution for a real-time optimization problem.The metaheuristic Elephant Herding Optimizations(EHO)algorithm is formulated based on ele-phant herding in their clans.EHO considers two herding behaviors to solve and enhance optimization problem.Based on Elephant Herd Optimization,a trust-based security method is built in this work.The proposed routing selects routes to destination based on the trust values,thus,finding optimal secure routes for transmitting data.Experimental results have demonstrated the effectiveness of the proposed EHO based routing.The Average Packet Loss Rate of the proposed Trust Elephant Herd Optimization performs better by 35.42%,by 1.45%,and by 31.94%than LEACH,Elephant Herd Optimization,and Trust LEACH,respec-tively at Number of Nodes 3000.As the proposed routing is efficient in selecting secure routes,the average packet loss rate is significantly reduced,improving the network’s performance.It is also observed that the lifetime of the network is enhanced with the proposed Trust Elephant Herd Optimization.
文摘Bundle recommendation aims to provide users with convenient one-stop solutions by recommending bundles of related items that cater to their diverse needs. However, previous research has neglected the interaction between bundle and item views and relied on simplistic methods for predicting user-bundle relationships. To address this limitation, we propose Hybrid Contrastive Learning for Bundle Recommendation (HCLBR). Our approach integrates unsupervised and supervised contrastive learning to enrich user and bundle representations, promoting diversity. By leveraging interconnected views of user-item and user-bundle nodes, HCLBR enhances representation learning for robust recommendations. Evaluation on four public datasets demonstrates the superior performance of HCLBR over state-of-the-art baselines. Our findings highlight the significance of leveraging contrastive learning and interconnected views in bundle recommendation, providing valuable insights for marketing strategies and recommendation system design.
基金supported by the Scientific Research Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi Higher Education Institutions,“Research on Deep Learning-based Recommendation Model and its Application”(Project No.2019KY0867)Guangxi Innovation-driven Development Special Project(Science and Technology Major Special Project)+2 种基金“Key Technology of Human-Machine Intelligent Interactive Touch Terminal Manufacturing and Industrial Cluster Application”(Project No.Guike AA21077018)“Touch display integrated intelligent touch system and industrial cluster application”(Project No.:Guike AA21077018-2)National Natural Science Foundation of China(Project No.:42065004).
文摘Session-based recommendation aims to predict user preferences based on anonymous behavior sequences.Recent research on session-based recommendation systems has mainly focused on utilizing attention mechanisms on sequential patterns,which has achieved significant results.However,most existing studies only consider individual items in a session and do not extract information from continuous items,which can easily lead to the loss of information on item transition relationships.Therefore,this paper proposes a session-based recommendation algorithm(SGT)based on Gated Recurrent Unit(GRU)and Transformer,which captures user interests by learning continuous items in the current session and utilizes all item transitions on sessions in a more refined way.By combining short-term sessions and long-term behavior,user dynamic preferences are captured.Extensive experiments were conducted on three session-based recommendation datasets,and compared to the baseline methods,both the recall rate Recall@20 and the mean reciprocal rank MRR@20 of the SGT algorithm were improved,demonstrating the effectiveness of the SGT method.